【題目】已知函數(shù)f(x)對任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x﹣1)的圖象關于點(1,0)對稱,且f(4)=4,則f(2012)=( )
A.0
B.﹣4
C.﹣8
D.﹣16
【答案】B
【解析】解:因為函數(shù)y=f(x﹣1)的圖象關于點(1,0)對稱, 所以函數(shù)y=f(x)的圖象關于點(0,0)對稱,
即函數(shù)y=f(x)是奇函數(shù),
令x=﹣3得,f(﹣3+6)+f(﹣3)=2f(3),
即f(3)﹣f(3)=2f(3),解得f(3)=0.
所以f(x+6)+f(x)=2f(3)=0,即f(x+6)=﹣f(x),
所以f(x+12)=f(x),即函數(shù)的周期是12.
所以f(2012)=f(12×168﹣4)=f(﹣4)=﹣f(4)=﹣4.
故選:B.
先利用函數(shù)y=f(x﹣1)的圖象關于點(1,0)對稱,得到函數(shù)y=f(x)是奇函數(shù),然后求出f(3)=0,最后利用函數(shù)的周期性求f(2012)的值.
科目:高中數(shù)學 來源: 題型:
【題目】定義區(qū)間(a,b)、[a,b)、(a,b]、[a,b]的長度均為d=b﹣a,用[x]表示不超過x的最大整數(shù),例如[3.2]=3,[﹣2.3]=﹣3.記{x}=x﹣[x],設f(x)=[x]{x},g(x)=x﹣1,若用d表示不等式f(x)<g(x)解集區(qū)間長度,則當0≤x≤3時有( )
A.d=1
B.d=2
C.d=3
D.d=4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U=R,集合A={x|2x<1},B={x|x﹣2<0},則(UA)∩B=( )
A.{x|x>2}
B.{x|0≤x<2}
C.{x|0<x≤2}
D.{x|x≤2}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若φ(x),g(x)都是奇函數(shù),f(x)=aφ(x)+bg(x)+2在(0,+∞)上存在最大值5,則f(x)在(﹣∞,0)上存在( )
A.最小值﹣5
B.最大值﹣5
C.最小值﹣1
D.最大值﹣3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com