【題目】定義區(qū)間(a,b)、[a,b)、(a,b]、[a,b]的長度均為d=b﹣a,用[x]表示不超過x的最大整數(shù),例如[3.2]=3,[﹣2.3]=﹣3.記{x}=x﹣[x],設(shè)f(x)=[x]{x},g(x)=x﹣1,若用d表示不等式f(x)<g(x)解集區(qū)間長度,則當(dāng)0≤x≤3時(shí)有( 。
A.d=1
B.d=2
C.d=3
D.d=4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:n∈N,n2>2n , 則¬p為( )
A.n∈N,n2>2n
B.n∈N,n2≤2n
C.n∈N,n2≤2n
D.n∈N,n2=2n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多項(xiàng)式函數(shù)f(x)=2x5﹣5x4﹣4x3+3x2﹣6x+7,當(dāng)x=5時(shí)利用秦九韶算法可得v2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若“x2﹣2x﹣8<0”是“x<m”的充分不必要條件,則m的取值范圍是( )
A.m>4
B.m≥4
C.m>﹣2
D.﹣2<m<4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2 , 若對(duì)任意x∈[a,a+2],不等式f(x+a)≥f(3x+1)恒成立,則實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)學(xué)歸納法證明34n+1+52n+1(n∈N)能被8整除時(shí), 當(dāng)n=k+1時(shí)34(k+1)+1+52(k+1)+1可變形( )
A.56×34k+1+25(34k+1+52k+1)
B.34k+1+52k+1
C.34×34k+1+52×52k+1
D.25(34k+1+52k+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( 。
A.如果平面α⊥平面β,那么平面α內(nèi)一定不存在直線平行于平面β
B.平面α⊥平面β,且α∩β=l,若在平面α內(nèi)過任一點(diǎn)P做L的垂線m,那么m⊥平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,那么平面α∥平面β
D.如果直線l∥平面α,那么直線l平行于平面α內(nèi)的任意一條直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,且f(4)=4,則f(2012)=( )
A.0
B.﹣4
C.﹣8
D.﹣16
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com