17.函數(shù)$f(x)={log_{\frac{1}{3}}}({9-{3^x}})$定義域?yàn)椋?∞,2);值域?yàn)椋?2,+∞).

分析 由9-3x>0,解得x范圍,可得函數(shù)f(x)的定義域.由9>9-3x>0,可得$f(x)={log_{\frac{1}{3}}}({9-{3^x}})$>$lo{g}_{\frac{1}{3}}9$.可得函數(shù)f(x)的值域.

解答 解:由9-3x>0,解得x<2,可得函數(shù)$f(x)={log_{\frac{1}{3}}}({9-{3^x}})$定義域?yàn)椋?∞,2).
由9>9-3x>0,可得$f(x)={log_{\frac{1}{3}}}({9-{3^x}})$>$lo{g}_{\frac{1}{3}}9$=-2.因此函數(shù)f(x)的值域?yàn)椋?2,+∞).
故答案分別為:(-∞,2),(-2,+∞).

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性、定義域與值域,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)A($\frac{1}{4}$,$\frac{1}{2}$),設(shè)它在A點(diǎn)處的切線l,則過點(diǎn)A與l垂直的直線方程為4x+4y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx-ax2-x(a∈R).
(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(1,-2)處的切線方程;
(2)當(dāng)a≤0時(shí),討論函數(shù)f(x)在其定義域內(nèi)的單調(diào)性;
(3)若函數(shù)y=g(x)的圖象上存在一點(diǎn)P(x0,g(x0)),使得以P為切點(diǎn)的切線l將其圖象分割為c1,c2兩部分,且c1,c2分別位于切線l的兩側(cè)(點(diǎn)P除外),則稱x0為函數(shù)y=g(x)的“轉(zhuǎn)點(diǎn)”,問函數(shù)y=f(x)(a≥0)是否存在這樣的一個(gè)“轉(zhuǎn)點(diǎn)”,若存在,求出這個(gè)“轉(zhuǎn)點(diǎn)”,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.定義在R上的可導(dǎo)函數(shù)f(x),當(dāng)x∈(0,+∞)時(shí),xf′(x)-f(x)>0恒成立,a=f(1),b=$\frac{1}{2}f(2),c=\frac{{\sqrt{2}}}{2}f({\sqrt{2}})$,則a,b,c的大小關(guān)系為( 。
A.c<a<bB.b<c<aC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,四邊形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,將四邊形ABCD沿對(duì)角線BD折成四面體A1-BCD,則四面體A1-BCD的體積的最大值為$\frac{1}{6}$,此時(shí)A1C與平面A1BD所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|a2x2-1|+ax,(其中a∈R,a≠0).
(1)當(dāng)a<0時(shí),若函數(shù)y=f(x)-c恰有x1,x2,x3,x4這4個(gè)零點(diǎn),求x1+x2+x3+x4的值;
(2)當(dāng)x∈[-1,1]時(shí),求函數(shù)y=f(x)(其中a<0)的最大值M(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.二次函數(shù)f(x)=x2-2mx+3,在區(qū)間[-1,2]上不單調(diào),則實(shí)數(shù)m的取值范圍是( 。
A.(-1,2)B.[-1,+∞)C.(-∞,2]D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.23000的末兩位數(shù)是(  )
A.46B.56C.66D.76

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2-3x,且f(x)在x=-1處取得極值.
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0,5]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案