【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cosθ,θ∈[0, ]
(1)求C的參數(shù)方程;
(2)設(shè)點(diǎn)D在半圓C上,半圓C在D處的切線(xiàn)與直線(xiàn)l:y= x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,求直線(xiàn)CD的傾斜角及D的坐標(biāo).

【答案】
(1)解:由半圓C的極坐標(biāo)方程為ρ=2cosθ,θ∈[0, ],即ρ2=2ρcosθ,可得C的普通方程為(x﹣1)2+y2=1(0≤y≤1).

可得C的參數(shù)方程為 (t為參數(shù),0≤t≤π).


(2)解:設(shè)D(1+cos t,sin t),由(1)知C是以C(1,0)為圓心,1為半徑的上半圓,

∵直線(xiàn)CD的斜率與直線(xiàn)l的斜率相等,∴tant= ,t=

故D的直角坐標(biāo)為 ,即( ,


【解析】(1)利用 即可得出直角坐標(biāo)方程,利用cos2t+sin2t=1進(jìn)而得出參數(shù)方程.(2)利用半圓C在D處的切線(xiàn)與直線(xiàn)l:y= x+2垂直,則直線(xiàn)CD的斜率與直線(xiàn)l的斜率相等,即可得出直線(xiàn)CD的傾斜角及D的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(a+1)lnx+ x2(a<﹣1)對(duì)任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,則a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一段演繹推理是這樣的: 直線(xiàn)平行于平面,則平行于平面內(nèi)所有直線(xiàn);已知直線(xiàn)平面,直線(xiàn)平面,直線(xiàn)∥平面,則直線(xiàn)∥直線(xiàn)的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋?/span>

A. 大前提錯(cuò)誤 B. 小前提錯(cuò)誤 C. 推理形式錯(cuò)誤 D. 非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1 , A1C1的中點(diǎn),BC=CA=CC1 , 則BM與AN所成角的余弦值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品在近天內(nèi)每件的銷(xiāo)售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系是:

,該商品的日銷(xiāo)售量(件)與時(shí)間(天)的函數(shù)關(guān)系是,求這種商品的日銷(xiāo)售金額的最大值,并指出日銷(xiāo)售金額最大的一天是天中的第幾天?(商品的日銷(xiāo)售金額=該商品的銷(xiāo)售價(jià)格日銷(xiāo)售量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017118日開(kāi)始,支付寶用戶(hù)可以通過(guò)參與螞蟻森林兩種方式獲得?ǎ◥(ài)國(guó)福、富強(qiáng)福、和諧福、友善福、敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶(hù)都將獲得一份現(xiàn)金紅包.某高校一個(gè)社團(tuán)在年后開(kāi)學(xué)后隨機(jī)調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進(jìn)行了一次調(diào)查(若未參與集五福的活動(dòng),則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

是否集齊五福

性別

合計(jì)

30

10

40

35

5

40

合計(jì)

65

15

80

(1)根據(jù)如上的列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為集齊五福與性別有關(guān)”?

(2)計(jì)算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

(3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五福活動(dòng),該大學(xué)的學(xué)生會(huì)從集齊五福的學(xué)生中,選取2位男生和3位女生逐個(gè)進(jìn)行采訪(fǎng),最后再隨機(jī)選取3次采訪(fǎng)記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪(fǎng)對(duì)象中至少有一位男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幾何體的三視圖如圖所示,則該幾何體的體積為( )

A. 64 B. 32 C. 96 D. 48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)

某產(chǎn)品生產(chǎn)廠(chǎng)家根據(jù)以往的生產(chǎn)銷(xiāo)售經(jīng)驗(yàn)得到下面有關(guān)銷(xiāo)售的統(tǒng)計(jì)規(guī)律:每生產(chǎn)產(chǎn)品(百臺(tái)),其總成本為萬(wàn)元,其中固定成本為2萬(wàn)元,并且每生產(chǎn)100臺(tái)的生產(chǎn)成本為1萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷(xiāo)售收入滿(mǎn)足。假定該產(chǎn)品銷(xiāo)售平衡,那么根據(jù)上述統(tǒng)計(jì)規(guī)律。

(1)要使工廠(chǎng)有盈利,產(chǎn)品應(yīng)控制在什么范圍?

(2)工廠(chǎng)生產(chǎn)多少臺(tái)產(chǎn)品時(shí)贏(yíng)利最大?并求此時(shí)每臺(tái)產(chǎn)品的售價(jià)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線(xiàn)AC與BD交于點(diǎn)O,點(diǎn)E、F分別在A(yíng)D,CD上,AE=CF,EF交BD于點(diǎn)H,將△DEF沿EF折到△D′EF的位置.
(1)證明:AC⊥HD′;
(2)若AB=5,AC=6,AE= ,OD′=2 ,求五棱錐D′﹣ABCFE體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案