已知等差數(shù)列中,首項(xiàng)a1=1,公差d為整數(shù),且滿足數(shù)列滿足項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式an
(2)若S2,的等比中項(xiàng),求正整數(shù)m的值.

(1)an= 2n-1(2)m=12

解析試題分析:(1)由題意,得解得< d <.   
d∈Z,∴d = 2.∴an=1+(n-1)2=2n-1.   
(2)∵,

,,S2S1(m)的等比中項(xiàng),
,即,  解得m=12.
考點(diǎn):數(shù)列的應(yīng)用;數(shù)列遞推式.
點(diǎn)評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,,,記數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù),且,使得、成等比數(shù)列?若存在,求出所有符合條件的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知等差數(shù)列,,求的公差;
(2)有三個數(shù)成等比數(shù)列,它們的和等于14,它們的積等于64,求該數(shù)列的公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足:的前n項(xiàng)和為
(Ⅰ)求;
(Ⅱ)令bn=(nN*),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的公差,等比數(shù)列為公比為,且,,.
(1)求等比數(shù)列的公比的值;
(2)將數(shù)列,中的公共項(xiàng)按由小到大的順序排列組成一個新的數(shù)列,是否存在正整數(shù)(其中)使得都構(gòu)成等差數(shù)列?若存在,求出一組的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)的和
(2)令,求的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為等差數(shù)列,且
(1)求數(shù)列的第二項(xiàng);
(2)若成等比數(shù)列,求數(shù)列的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列前三項(xiàng)為,前項(xiàng)的和為,=2550.
⑴ 求的值;  
⑵ 求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
等差數(shù)列的前項(xiàng)和為,且.
(1)數(shù)列滿足:求數(shù)列的通項(xiàng)公式;
(2)設(shè)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案