(本小題滿分12分)如圖,三棱柱的各棱長(zhǎng)均為2,側(cè)面底面,側(cè)棱與底面所成的角為
(1) 求直線與底面所成的角;
(2) 在線段上是否存在點(diǎn),使得平面平面?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由。

(1);(2)。

解析試題分析:(1)根據(jù)題意建立空間直角坐標(biāo)系,然后表示平面的法向量和直線的斜向量,進(jìn)而利用向量的夾角公式得到線面角的求解。
(2)假設(shè)存在點(diǎn)滿足題意,然后利用向量的垂直關(guān)系,得到點(diǎn)的坐標(biāo)。
解:(1),
∵側(cè)面平面,
,,,,,
,又底面的法向量                …4分
設(shè)直線與底面所成的角為,則,∴
所以,直線與底面所成的角為.                          …6分
(2)設(shè)在線段上存在點(diǎn),設(shè)=,,則
  …7分
設(shè)平面的法向量
                           …9分
設(shè)平面的法向量
                                 …10分
要使平面平面,則
                             …12分
考點(diǎn):本題主要是考查線面角的求解,以及面面垂直的探索性命題的運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是合理的建立空間直角坐標(biāo)系,正確的表示點(diǎn)的坐標(biāo),得到平面的法向量和斜向量,進(jìn)而結(jié)合數(shù)量積的知識(shí)來(lái)證明垂直和求解角的問(wèn)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(文科)長(zhǎng)方體中,,,是底面對(duì)角線的交點(diǎn).

(Ⅰ) 求證:平面;
(Ⅱ) 求證:平面;
(Ⅲ) 求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)如圖,在直三棱柱中,底面為等邊三角形,且,、分別是,的中點(diǎn).

(1)求證:;
(2)求證:;
(3) 求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)如圖,在四棱錐中,底面是矩形,,、分別為線段、的中點(diǎn),⊥底面.

(Ⅰ)求證:∥平面
(Ⅱ)求證:平面^平面;
(Ⅲ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在長(zhǎng)方體中,,且

(I)求證:對(duì)任意,總有;
(II)若,求二面角的余弦值;
(III)是否存在,使得在平面上的射影平分?若存在, 求出的值, 若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知正方形ABCD的邊長(zhǎng)為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動(dòng)點(diǎn).試探究點(diǎn)M的位置,使F—AE—M為直二面角
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

幾何體的三視圖如圖,交于點(diǎn),分別是直線的中點(diǎn),

(I);
(II)
(Ⅲ)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.

(1)求證:AG∥平面PEC;
(2)求AE的長(zhǎng);
(3)求二面角E—PC—A的正弦值.(本題滿分14分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,的交點(diǎn),,是線段的中點(diǎn).

(1)求證:平面;
(2)求三棱錐的體積

查看答案和解析>>

同步練習(xí)冊(cè)答案