雙曲線數(shù)學公式(a>0,b>0)的兩個焦點為F1,F(xiàn)2,若P為其上一點,且|PF1|=2|PF2|,則雙曲線離心率的取值范圍是________.

(1,3]
分析:雙曲線右支上到右焦點距離最近的點為右頂點,所以由題意知c-a≤2a,由此可知答案.
解答:∵|PF1|-|PF2|=|PF2|=2a,
而雙曲線右支上到右焦點距離最近的點為右頂點,
∴有c-a≤2a,
∴1<e≤3,
故答案為(1,3].
點評:本題考查雙曲線的性質(zhì)和應用,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16.已知F1、F2為雙曲線=1(a>0,b>0且a≠b)的兩個焦點,P為雙曲線右支上異于頂點的任意一點,O為坐標原點.下面四個命題

(A)△PF1F2的內(nèi)切圓的圓心必在直線x=a上;

(B)△PF1F2的內(nèi)切圓的圓心必在直線x=b上;

(C)△PF1F2的內(nèi)切圓的圓心必在直線OP上;

(D)△PF1F2的內(nèi)切圓必通過點(a,0).

    其中真命題的代號是__________(寫出所有真命題的代號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F、F為雙曲線(a>0,b>0)的焦點,過F作垂直于x軸的直線交雙曲線于點P,且∠PFF=30,求雙曲線的漸近線方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,O為坐標原點,給定兩點A(1,0),B(0,—2),點C滿足,其中,且

(1)求點C的軌跡方程;

(2)設點C的軌跡與雙曲線(a>0,b>0)相交于M、N兩點,且以MN為直徑的圓經(jīng)過原點,求證:為定值;

(3)在(2)的條件下,若雙曲線的離心率不大于,求雙曲線實軸長的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年新課標高三二輪復習綜合驗收(6)理科數(shù)學試卷 題型:選擇題

已知雙曲線(a>0,b>0)的兩個焦點為、,點A在雙曲線第一象限的圖象上,若△的面積為1,且,,則雙曲線方程為(    )

A.        B.

C.     D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆陜西省高二上學期期中文科數(shù)學試卷 題型:解答題

已知F1、F2為雙曲線a>0,b>0)的焦點,過F2作垂直于x軸的直線交雙曲線于點P,且∠PF1F2=30°.求雙曲線的離心率.

 

查看答案和解析>>

同步練習冊答案