【題目】已知拋物線的焦點為,直線過點,且與拋物線交于、兩點,.
(1)求的取值范圍;
(2)若,點的坐標為,直線與拋物線的另一個交點為,直線與拋物線的另一個交點為,直線與軸交于點,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】2021年起,福建省高考將實行“3+1+2”新高考.“3”是統(tǒng)一高考的語文、數(shù)學和英語三門;“1”是選擇性考試科目,由考生在物理、歷史兩門中選一門;“2”也是選擇性考試科目,由考生從化學、生物、地理、政治四門中選擇兩門,則某考生自主選擇的“1+2”三門選擇性考試科目中,歷史和政治均被選擇到的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的上、下焦點分別為,,離心率為,點 在橢圓C上,延長交橢圓于N點.
(1)求橢圓C的方程;
(2)P,Q為橢圓上的點,記線段MN,PQ的中點分別為A,B(A,B異于原點O),且直線AB過原點O,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,直線交橢圓于,兩點.
(1)若點滿足(為坐標原點),求弦的長;
(2)若直線的斜率不為0且過點,為點關于軸的對稱點,點滿足,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面邊長為,側(cè)棱長為的正四棱柱中,是側(cè)棱上的一點,.
(1)若,求異面直線與所成角的余弦;
(2)是否存在實數(shù),使直線與平面所成角的正弦值是?若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若點為點在平面上的正投影,則記.如圖,在棱長為的正方體中,記平面為,平面為,點是棱上一動點(與、不重合),.給出下列三個結(jié)論:
①線段長度的取值范圍是;
②存在點使得平面;
③存在點使得.
其中,所有正確結(jié)論的序號是( )
A.①②③B.②③C.①③D.①②
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x的不等式(4kx﹣k2﹣12k﹣9)(2x﹣11)>0,其中k∈R,對于不等式的解集A,記B=A∩Z(其中Z為整數(shù)集),若集合B是有限集,則使得集合B中元素個數(shù)最少時的實數(shù)k的取值范圍是__.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在實數(shù)m,使得為R上的奇函數(shù),則稱是位差值為m的“位差奇函數(shù)”.
(1)判斷函數(shù)和是否是位差奇函數(shù),并說明理由;
(2)若是位差值為的位差奇函數(shù),求的值;
(3)若對于任意,都不是位差值為m的位差奇函數(shù),求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com