【題目】如圖,四邊形ABCD、ADEF為正方形,G,H是DF,F(xiàn)C的中點(diǎn).
(1)求證:GH∥平面CDE;
(2)求證:BC⊥平面CDE.

【答案】
(1)證明:∵G,H是DF,F(xiàn)C的中點(diǎn).

∴GH∥CD,

又GH平面CDE,CD平面CDE,

∴GH∥平面CDE


(2)證明:∵四邊形ABCD、ADEF為正方形,

∴DE⊥AD,CD⊥AD,BC∥AD.

又DE平面CDE,CD平面CDE,CD∩DE=D,

∴AD⊥平面CDE,

又BC∥AD,

∴BC⊥平面CDE


【解析】(1)由中位線(xiàn)定理得出GH∥CD,故GH∥平面CDE;(2)由AD⊥CD,AD⊥DE得出AD⊥平面CDE,而B(niǎo)C∥AD,故BC⊥平面CDE.
【考點(diǎn)精析】本題主要考查了直線(xiàn)與平面平行的判定和直線(xiàn)與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行;簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行;一條直線(xiàn)與一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;b)定理體現(xiàn)了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)與拋物線(xiàn)相切,且與軸的交點(diǎn)為,點(diǎn).若動(dòng)點(diǎn)與兩定點(diǎn)所構(gòu)成三角形的周長(zhǎng)為6.

(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ) 設(shè)斜率為的直線(xiàn)交曲線(xiàn)兩點(diǎn),當(dāng),且位于直線(xiàn)的兩側(cè)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , , ,點(diǎn)上,且

(Ⅰ)已知點(diǎn)上,且,求證:平面平面;

(Ⅱ)當(dāng)二面角的余弦值為多少時(shí),直線(xiàn)與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,過(guò)點(diǎn)作直線(xiàn)交圓兩點(diǎn),分別過(guò)兩點(diǎn)作圓的切線(xiàn),當(dāng)兩條切線(xiàn)相交于點(diǎn)時(shí),則點(diǎn)的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,過(guò)點(diǎn)作直線(xiàn)交圓兩點(diǎn),分別過(guò)兩點(diǎn)作圓的切線(xiàn),當(dāng)兩條切線(xiàn)相交于點(diǎn)時(shí),則點(diǎn)的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語(yǔ)文樂(lè)隊(duì)理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗(yàn)證這個(gè)結(jié)論,從該校選擇甲乙兩個(gè)同軌班級(jí)進(jìn)行試驗(yàn),其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無(wú)額外訓(xùn)練,一段時(shí)間后進(jìn)行數(shù)學(xué)應(yīng)用題測(cè)試,統(tǒng)計(jì)數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)

(1)能夠據(jù)此判斷有97.5%把握熱內(nèi)加強(qiáng)語(yǔ)文閱讀訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān)?

(2)經(jīng)過(guò)多次測(cè)試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在5—7分鐘,小剛正確解得一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在6—8分鐘,現(xiàn)小明、小剛同時(shí)獨(dú)立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比小明現(xiàn)正確解答完的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,五面體中,四邊形是菱形, 是邊長(zhǎng)為2的正三角形, ,

(1)證明: ;

(2)若在平面內(nèi)的正投影為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}中,a1=1,an+an+1=( n , Sn=a1+4a2+42a3+…+4n1an , 類(lèi)比課本中推導(dǎo)等比數(shù)列前項(xiàng)和公式的方法,可求得5Sn﹣4nan=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓經(jīng)過(guò)不同的三點(diǎn)在第三象限),線(xiàn)段的中點(diǎn)在直線(xiàn)上.

(Ⅰ)求橢圓的方程及點(diǎn)的坐標(biāo);

(Ⅱ)設(shè)點(diǎn)是橢圓上的動(dòng)點(diǎn)(異于點(diǎn)且直線(xiàn)分別交直線(xiàn)兩點(diǎn),問(wèn)是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案