【題目】為了調(diào)查甲、乙兩個網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計上午800-1000間各自的點(diǎn)擊量:

甲:73,24,58,72,64,38,6670,2041,55,678,25

乙:12,37,21,5,5442,61,45,19,6,71,36,42,14

1)請用莖葉圖表示上面的數(shù)據(jù).

2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是多少?

3)甲、乙兩個網(wǎng)站哪個更受歡迎?并說明理由.

【答案】1)莖葉圖見解析;(2;(3)甲網(wǎng)站更受歡迎.

【解析】

1)結(jié)合統(tǒng)計數(shù)據(jù)列出莖葉圖即可;

2)先求出甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻數(shù),再結(jié)合概率公式求解即可;

3)由莖葉圖可知甲網(wǎng)站的點(diǎn)擊量集中在莖葉圖的下方,而乙網(wǎng)站的點(diǎn)擊量集中在莖葉圖的上方,即甲網(wǎng)站更受歡迎,得解.

解:(1)莖葉圖如圖示:

2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率為

3)甲網(wǎng)站更受歡迎,理由為甲網(wǎng)站的點(diǎn)擊量集中在莖葉圖的下方,而乙網(wǎng)站的點(diǎn)擊量集中在莖葉圖的上方.

從數(shù)據(jù)的分布情況來看,甲網(wǎng)站更受歡迎.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

(1)將, 的方程化為普通方程,并說明它們分別表示什么曲線?

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.若上的點(diǎn)對應(yīng)的參數(shù)為,點(diǎn)上,點(diǎn)的中點(diǎn),求點(diǎn)到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=.

(I)求f(x)在區(qū)間[1,a](a>1)上的最小值;

(II)若關(guān)于x的不等式f2(x)+mf(x)>0只有兩個整數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某營養(yǎng)協(xié)會對全市18歲男生的身高作調(diào)查,統(tǒng)計顯示全市18歲男生的身高服從正態(tài)分布,現(xiàn)某校隨機(jī)抽取了100名18歲男生的身高分析,結(jié)果這100名學(xué)生的身高全部介于之間.現(xiàn)將結(jié)果按如下方式分為6組,第一組,第二組,…,第六組,得到如圖所示的頻率分布直方圖.

(1)若全市18歲男生共有人,試估計該市身高在以上的18歲男生人數(shù);

(2)求的值,并計算該校18歲男生的身高的中位數(shù)(精確到小數(shù)點(diǎn)后三位);

(3)若身高以上的學(xué)生校服需要單獨(dú)定制,現(xiàn)從這100名學(xué)生中身高在以上的同學(xué)中任意抽取3人,這三人中校服需要單獨(dú)定制的人數(shù)記為,求的分布列和期望.

附: ,則;

,則

,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為兩種商品2019年前三季度銷售量的折線統(tǒng)計圖,結(jié)合統(tǒng)計圖,下列說法中正確的有________.

1~6月,商品的月銷售量都超過商品

7月份商品與商品的銷售量相等

③對于商品7~8月的月銷售量增長率與8~9月的月銷售量增長率相同

2019年前三季度商品的銷量逐月增長

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,恒有成立,求實(shí)數(shù)的取值范圍;

(2)若函數(shù)有兩個極值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,側(cè)面底面,,分別為,中點(diǎn),

(Ⅰ)求證:∥平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在棱上是否存在一點(diǎn),使平面?若存在,指出點(diǎn)的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>[0,1]的函數(shù)fx)同時滿足以下三個條件:

對任意的x∈[01],總有fx≥0;

f1)=1;

當(dāng)x1,x2∈[01],且x1x2∈[01]時,f(x1x2)≥f(x1)f(x2)成立.稱這樣的函數(shù)為“友誼函數(shù)”.

請解答下列各題:

1)已知fx)為“友誼函數(shù)”,求f0)的值;

2)函數(shù)gx)=2x1在區(qū)間[01]上是否為“友誼函數(shù)”?請給出理由;

3)已知fx)為“友誼函數(shù)”,假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]x0,求證: f(x0)x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),分別是定義在上的偶函數(shù)和奇函數(shù),且

1)求函數(shù),的解析式;

2)若對任意,不等式恒成立,求實(shí)數(shù)的最大值;

3)設(shè),若函數(shù)的圖象有且只有一個公共點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案