【題目】如圖,在四棱錐中,底面是正方形,側(cè)面底面,,分別為,中點(diǎn),.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一點(diǎn),使平面?若存在,指出點(diǎn)的位置;若不存在,說(shuō)明理由.
【答案】(Ⅰ)詳見(jiàn)解析,(Ⅱ)(Ⅲ)不存在.
【解析】
試題(Ⅰ)證明線面平行,關(guān)鍵在于找出線線平行.本題條件含中點(diǎn),故從中位線上找線線平行.,分別為,中點(diǎn),在△中,是中點(diǎn),是中點(diǎn),所以∥.又因?yàn)?/span>平面,平面,所以∥平面.(Ⅱ)求二面角的大小,有兩個(gè)思路,一是作出二面角的平面角,這要用到三垂線定理及其逆定理,利用側(cè)面底面,可得底面的垂線,再作DF的垂線,就可得二面角的平面角,二是利用空間向量求出大小.首先建立空間坐標(biāo)系. 取中點(diǎn).由側(cè)面底面易得面.以為原點(diǎn),分別為軸建立空間直角坐標(biāo)系.再利用兩平面法向量的夾角與二面角的平面角的關(guān)系,求出結(jié)果,(Ⅲ)存在性問(wèn)題,一般從假設(shè)存在出發(fā),構(gòu)造等量關(guān)系,將存在是否轉(zhuǎn)化為方程是否有解.
證明:(Ⅰ)如圖,連結(jié).
因?yàn)榈酌?/span>是正方形,
所以與互相平分.
又因?yàn)?/span>是中點(diǎn),
所以是中點(diǎn).
在△中,是中點(diǎn),是中點(diǎn),
所以∥.
又因?yàn)?/span>平面,平面,
所以∥平面. 4分
(Ⅱ)取中點(diǎn).在△中,因?yàn)?/span>,
所以.
因?yàn)槊?/span>底面,
且面面,
所以面.
因?yàn)?/span> 平面
所以.
又因?yàn)?/span>是中點(diǎn),
所以 .
如圖,以為原點(diǎn),分別為軸建立空間直角坐標(biāo)系.
因?yàn)?/span>,所以,則,,,,,,,.
于是,,.
因?yàn)?/span>面,所以是平面的一個(gè)法向量.
設(shè)平面的一個(gè)法向量是.
因?yàn)?/span>所以即
令則.
所以.
由圖可知,二面角為銳角,所以二面角的余弦值為. 10分
(Ⅲ)假設(shè)在棱上存在一點(diǎn),使面.設(shè),
則. 由(Ⅱ)可知平面的一個(gè)法向量是.
因?yàn)?/span>面,所以.
于是,,即.
又因?yàn)辄c(diǎn)在棱上,所以與共線.
因?yàn)?/span>,,
所以.
所以,無(wú)解.
故在棱上不存在一點(diǎn),使面成立. 14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】燕山公園計(jì)劃改造一塊四邊形區(qū)域鋪設(shè)草坪,其中百米,百米,,,草坪內(nèi)需要規(guī)劃4條人行道以及兩條排水溝,其中分別為邊的中點(diǎn).
(1)若,求排水溝的長(zhǎng);
(2)當(dāng)變化時(shí),求條人行道總長(zhǎng)度的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷正確的是( )
A. 函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱
B. 函數(shù)的圖象關(guān)于直線對(duì)稱
C. 函數(shù)的最小正周期為
D. 當(dāng)時(shí),函數(shù)的圖象與直線圍成的封閉圖形面積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查甲、乙兩個(gè)網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計(jì)上午8:00-10:00間各自的點(diǎn)擊量:
甲:73,24,58,72,64,38,66,70,20,41,55,67,8,25
乙:12,37,21,5,54,42,61,45,19,6,71,36,42,14
(1)請(qǐng)用莖葉圖表示上面的數(shù)據(jù).
(2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是多少?
(3)甲、乙兩個(gè)網(wǎng)站哪個(gè)更受歡迎?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)若有兩個(gè)零點(diǎn),求的范圍;
(2)若有兩個(gè)極值點(diǎn),求的范圍;
(3)在(2)的條件下,若的兩個(gè)極值點(diǎn)為 ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線與軸平行.函數(shù).
(Ⅰ)求的值;
(Ⅱ)求證:函數(shù)共有兩個(gè)零點(diǎn),一個(gè)零點(diǎn)是,另一個(gè)零點(diǎn)在區(qū)間內(nèi);
(Ⅲ)求證:存在,當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求的圖象在處的切線方程;
(Ⅱ)若函數(shù)有兩個(gè)不同零點(diǎn), ,且,求證: ,其中是的導(dǎo)函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 ,函數(shù) ,且圖象上一個(gè)最高點(diǎn)為與最近的一個(gè)最低點(diǎn)的坐標(biāo)為 .
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)為常數(shù),判斷方程在區(qū)間上的解的個(gè)數(shù);
(Ⅲ)在銳角中,若,求 的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com