已知數(shù)列的前項(xiàng)和為,且,數(shù)列滿足,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

(1).. (2)

解析試題分析:(1)由 ,得.
明確是等比數(shù)列,公比為2,首項(xiàng),得到.
,得是等差數(shù)列,公差為2. 可得.
(2)由  利用“分組求和法”.
試題解析:(1)當(dāng),;             1分
當(dāng)時(shí), ,∴.           2分
是等比數(shù)列,公比為2,首項(xiàng), ∴.            3分
,得是等差數(shù)列,公差為2.                   4分
又首項(xiàng),∴.                 6分
(2)                  8分
                    10分
.                       12分
考點(diǎn):等差數(shù)列、等比數(shù)列的通項(xiàng)公式及其求和公式,“分組求和法”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是首項(xiàng)為,公差為的等差數(shù)列(d≠0),是其前項(xiàng)和.記bn=,
,其中為實(shí)數(shù).
(1) 若,且,成等比數(shù)列,證明:Snk=n2Sk(k,n∈N+);
(2) 若是等差數(shù)列,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若數(shù)列的前項(xiàng)和滿足,等差數(shù)列滿足.
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是等差數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)對(duì),設(shè),若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,,若成等比數(shù)列,且時(shí),
(1)求證:當(dāng)時(shí),成等差數(shù)列;
(2)求的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是公比為的等比數(shù)列,且成等差數(shù)列.
⑴求的值;
⑵設(shè)是以為首項(xiàng),為公差的等差數(shù)列,求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}是首項(xiàng)為1,公差為d的等差數(shù)列,數(shù)列{bn}是首項(xiàng)為1,公比為q(q>1)的等比數(shù)列.
(1)若a5=b5,q=3,求數(shù)列{an·bn}的前n項(xiàng)和;
(2)若存在正整數(shù)k(k≥2),使得ak=bk.試比較an與bn的大小,并說(shuō)明理由..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知公差不為0的等差數(shù)列{an},a1=1,且a2,a4-2,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn}的通項(xiàng)公式是bn=2n-1,集合A={a1,a2,…,an,…},B={b1,b2,b3,…,bn,…}.將集合AB中的元素按從小到大的順序排成一個(gè)新的數(shù)列{cn},求數(shù)列{cn}的前n項(xiàng)和Sn.

查看答案和解析>>

同步練習(xí)冊(cè)答案