精英家教網 > 高中數學 > 題目詳情

【題目】已知在銳角中,角,,所對的邊分別為,,,且

(1)求角大;

(2)當時,求的取值范圍。

【答案】1)由已知及余弦定理,得因為為銳角,所以

2)由正弦定理,得

【解析】

試題分析:(I)利用銳角△ABC中,sinC=,求出角C的大小;(II)先求得 B+A=150°,根據B、A都是銳角求出A的范圍,由正弦定理得到a=2sinA,b=2sinB=2sin(A+30°),根據 a2+b2=4+2sin(2A﹣60°) A的范圍,得(2A﹣60°),從而得到a2+b2的范圍.

詳解:(I)由已知及余弦定理,得tanC===,

∴sinC=,故銳角C=

(II)當C=1時,∵B+A=150°,∴B=150°﹣A.由題意得

∴60°<A<90°.由 =2,得 a=2sinA,b=2sinB=2sin(A+30°),

∴a2+b2=4[sin2A+sin2(A+30°)]=4[+]=4[1﹣cos2A﹣cosA﹣sin2A)]=4+2sin(2A﹣60°).

∵60°<A<90°,∴(2A﹣60°).

∴7<a2+b2≤4+2

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】利用獨立性檢驗的方法調查高中生性別與愛好某項運動是否有關,通過隨機調查200名高中生是否愛好某項運動,利用列聯(lián)表,由計算可得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正確結論是(

A. 99%以上的把握認為“愛好該項運動與性別無關

B. 99%以上的把握認為“愛好該項運動與性別有關”

C. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別有關”

D. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別無關”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校因為寒假延期開學,根據教育部停課不停學的指示,該學校組織學生線上教學,高一年級在線上教學一個月后,為了了解線上教學的效果,在線上組織數學學科考試,隨機抽取50名學生(滿分150分,且抽取的學生成績都在內)的成績并制成頻率分布直方圖如圖所示.

1)根據頻率分布直方圖,估計這50名同學的數學平均成績;(同一組中的數據以該組區(qū)間的中點值作代表)

2)用分層抽樣的方法從成績在的同學中抽取6名,再在抽取的這6名同學中任選2名,求這兩名同學的數學成績在同一組中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為了提高利潤,從2012年至2018年每年對生產環(huán)節(jié)的改進進行投資,投資金額與年利潤增長的數據如下表:

年份

2012

2013

2014

2015

2016

2017

2018

投資金額(萬元)

年利潤增長(萬元)

(1)請用最小二乘法求出關于的回歸直線方程;如果2019年該公司計劃對生產環(huán)節(jié)的改進的投資金額為萬元,估計該公司在該年的年利潤增長為多少?(結果保留兩位小數)

(2)現(xiàn)從2012年—2018年這年中抽出三年進行調查,記年利潤增長投資金額,設這三年中(萬元)的年份數為,求隨機變量的分布列與期望.

參考公式:.

參考數據:,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為常數.

(1)討論函數的單調性;

(2)若函數有兩個極值點,,且,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,是兩個不同的平面,則的必要不充分條件是( )

A.內存在一條直線垂直于內的兩條相交直線

B.平行于的一個平面與垂直

C.內存在一條直線垂直于內的無數條直線

D.垂直于的一條直線與平行

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,則以下結論正確的是(

A.函數的單調減區(qū)間是

B.函數有且只有1個零點

C.存在正實數,使得成立

D.對任意兩個正實數,,且,若

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,設L、M、N分別為的∠BAC、∠ CBA、∠ ACB內的點,且∠BAL=∠ ACL,∠ LBA=∠ LAC,∠ CBM=∠ BAM,∠ MCB=∠ MBA,∠ ACN=∠ CBN,∠ NAC=∠ NCB.

證明:(1) AL、BM、CN三線交于一點P;

(2)L、M、N、P四點共圓.

查看答案和解析>>

同步練習冊答案