【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結(jié)果統(tǒng)計如下:

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天的經(jīng)濟損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟損失的數(shù)學期望.

【答案】1 29060

【解析】

(1)根據(jù)古典概型概率公式和組合數(shù)的計算可得所求概率;(2) 任選一天,設(shè)該天的經(jīng)濟損失為元,分別求出,,,進而求得數(shù)學期望,據(jù)此得出該企業(yè)一個月經(jīng)濟損失的數(shù)學期望.

解:(1)設(shè)為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則

.

2)任選一天,設(shè)該天的經(jīng)濟損失為元,則的可能取值為0,2201480

,

,

所以(元),

故該企業(yè)一個月的經(jīng)濟損失的數(shù)學期望為(元).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前項和為,滿足.

(Ⅰ)(i)求數(shù)列的通項公式;

(ii)已知對于,不等式恒成立,求實數(shù)的最小值;

(Ⅱ) 數(shù)列的前項和為,滿足,是否存在非零實數(shù),使得數(shù)列為等比數(shù)列? 并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準:(單位:噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 …… 分成9組,制成了如圖所示的頻率分布直方圖

1)求頻率分布直方圖中的值;

2)若該市政府看望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:已知函數(shù)上的最小值為,若恒成立,則稱函數(shù)上具有性質(zhì).

)判斷函數(shù)上是否具有性質(zhì)?說明理由.

)若上具有性質(zhì),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,證明的圖象與軸相切;

(2)當時,證明存在兩個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如表:

AQI

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

重度污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質(zhì)量對應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.

i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟損失為X元,求X的分布列;

ii)試問該企業(yè)7月、8月、9月這三個月因空氣質(zhì)量造成的經(jīng)濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,的中點,現(xiàn)將折起,使得平面平面,平面平面.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線的參數(shù)方程為,為參數(shù)),曲線上的點對應(yīng)的參數(shù).在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.射線與曲線交于點

1)求曲線的直角坐標方程;

2)若點,在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進一步改善民生,201911日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養(yǎng)老人費用②子女教育費用③繼續(xù)教育費用④大病醫(yī)療費用等.其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元②子女教育費用:每個子女每月扣除1000元.新個稅政策的稅率表部分內(nèi)容如下:

級數(shù)

一級

二級

三級

四級

每月應(yīng)納稅所得額(含稅)

不超過3000元的部分

超過3000元至12000元的部分

超過12000元至25000元的部分

超過25000元至35000元的部分

稅率

3

10

20

25

1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項附加扣除.請問李某月應(yīng)繳納的個稅金額為多少?

2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領(lǐng)的相關(guān)資料,通過整理資料可知,有一個孩子的有400人,沒有孩子的有100人,有一個孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項附加扣除(受統(tǒng)計的500人中,任何兩人均不在一個家庭).若他們的月收入均為20000元,依據(jù)樣本估計總體的思想,試估計在新個稅政策下這類人群繳納個稅金額的分布列與期望.

查看答案和解析>>

同步練習冊答案