【題目】為凈化新安江水域的水質(zhì),市環(huán)保局于2017年底在新安江水域投入一些蒲草,這些蒲草在水中的蔓延速度越來(lái)越快,2018年二月底測(cè)得蒲草覆蓋面積為,2018年三月底測(cè)得覆蓋面積為,蒲草覆蓋面積(單位:)與月份(單位:月)的關(guān)系有兩個(gè)函數(shù)模型可供選擇.

(Ⅰ)分別求出兩個(gè)函數(shù)模型的解析式;

(Ⅱ)若市環(huán)保局在2017年年底投放了的蒲草,試判斷哪個(gè)函數(shù)模型更合適?并說(shuō)明理由;

(Ⅲ)利用(Ⅱ)的結(jié)論,求蒲草覆蓋面積達(dá)到的最小月份.

(參考數(shù)據(jù):,

【答案】(Ⅰ), (Ⅱ)模型更為合適 (Ⅲ) 9月 .

【解析】

(Ⅰ)根據(jù)題設(shè)條件得到每個(gè)函數(shù)中兩個(gè)參數(shù)的方程組,解這些方程組可得函數(shù)的解析式.

(Ⅱ)根據(jù)(Ⅰ)中的函數(shù)計(jì)算時(shí)的函數(shù)值,比差的絕對(duì)值較小的函數(shù)為更合適的模型.

(Ⅲ)不等式的最小正整數(shù)解即為所求的月份.

(Ⅰ)由已知 ,所以,

由已知 ,所以.

(Ⅱ)若用模型,則當(dāng)時(shí),

若用模型,則當(dāng)時(shí),

易知,使用模型更為合適.

(Ⅲ)由,

,

故蒲草覆蓋面積達(dá)到的最小月份是9月.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

1)當(dāng)時(shí),求的值域和單調(diào)減區(qū)間;

2)若存在單調(diào)遞增區(qū)間,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為拋物線上的兩點(diǎn),為坐標(biāo)原點(diǎn),且,則的面積的最小值為( )

A. 16 B. 8 C. 4 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德被稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他對(duì)圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓是他的研究成果之一,指的是:已知?jiǎng)狱c(diǎn)M與兩定點(diǎn)AB的距離之比為λ(λ>0,λ≠1),那么點(diǎn)M的軌跡就是阿波羅尼斯圓.下面,我們來(lái)研究與此相關(guān)的一個(gè)問題.已知圓:x2+y2=1和點(diǎn),點(diǎn)B(1,1),M為圓O上動(dòng)點(diǎn),則2|MA|+|MB|的最小值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(常數(shù)).

(1)討論的單調(diào)性;

(2)設(shè)的導(dǎo)函數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值來(lái)衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于或等于 的產(chǎn)品為優(yōu)質(zhì)產(chǎn)品.現(xiàn)用兩種新配方(分別稱為 配方和 配方)做試驗(yàn),各生產(chǎn)了 件這種產(chǎn)品,并測(cè)量了每件產(chǎn)品的質(zhì)量指標(biāo)值(都在區(qū)間 內(nèi)),將這些數(shù)據(jù)分成 組: , , ,得到如下兩個(gè)頻率分布直方圖:

已知這 種配方生產(chǎn)的產(chǎn)品利潤(rùn) (單位:百元)與其質(zhì)量指標(biāo)值 的關(guān)系式均為.

若以上面數(shù)據(jù)的頻率作為概率,分別從用 配方和 配方生產(chǎn)的產(chǎn)品中隨機(jī)抽取一件,且抽取的這 件產(chǎn)品相互獨(dú)立,則抽得的這兩件產(chǎn)品利潤(rùn)之和為 的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案