設(shè)函數(shù)f(x)的定義域為D,若?x∈D,?y∈D,使得f(y)=-f(x)成立,則稱函數(shù)f(x)為“美麗函數(shù)”.下列所給出的五個函數(shù):
①y=x2;
②y=
1
x-1

③f(x)=ln(2x+3);
④y=2x-2-x
⑤y=2sinx-1.
其中是“美麗函數(shù)”的序號有
 
考點:命題的真假判斷與應(yīng)用
專題:新定義
分析:由題意知“美麗函數(shù)”即為值域關(guān)于原點對稱的函數(shù).
解答: 解:①函數(shù)y=x2≥0,所以不可能是“美麗函數(shù)”,所以①錯;
y=
1
x-1
的值域為(-∞,0)∪(0,+∞),關(guān)于原點對稱,所以②正確;
③f(x)=ln(2x+3),值域為R,關(guān)于原點對稱,所以③正確;
④y=2x-2-x,令t=2x>0,則y=t-
1
t
,在(0,+∞)上單調(diào)遞增,且值域為R,值域關(guān)于原點對稱,所以④正確;
⑤y=2sinx-1,則y∈[-3,1],不關(guān)于原點對稱,所以⑤錯誤.
故答案為:②③④.
點評:本題考查的函數(shù)的值域,新定義題型,關(guān)鍵是理解題目的意思.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)為定義在區(qū)間I上的函數(shù).若對I上任意兩點x1,x2(x1≠x2),總有f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)],則稱f(x)為I上的嚴格下凸函數(shù).若f(x)為I上的嚴格下凸函數(shù),其充要條件為:對任意x∈I有f″(x)>0成立(f″(x)是函數(shù)f(x)導(dǎo)函數(shù)的導(dǎo)函數(shù)),則以下結(jié)論正確的有
 

①f(x)=
2x+2014
3x+7
,x∈[0,2014]是嚴格下凸函數(shù).
②設(shè)x1,x2∈(0,
π
2
)且x1≠x2,則有tan(
x1+x2
2
)>
1
2
(tanx1+tanx2
③f(x)=-x3+3x2在區(qū)間[1,2014]上是嚴格下凸函數(shù).
④f(x)=
1
6
x3+sinx,(x∈(
π
6
,
π
3
))是嚴格下凸函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公比不為1的等比數(shù)列{an}的首項a1=
1
2
,前n項和為Sn,且a4+S4,a5+S5,a6+S6成等差數(shù)列.
(1)求等比數(shù)列{an}的通項公式;
(2)當(dāng)n≥3時,求數(shù)列{|3+log2an|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0

(1)求z=x+2y的最大和最小值.
(2)求z=
y
x
的取值范圍.
(3)求z=x2+y2的最大和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=logax(a>0,且a≠1)的圖象如圖所示,則下列函數(shù)圖象正確的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一組數(shù)據(jù)的平均數(shù)是3,將這組數(shù)據(jù)中的每一個數(shù)據(jù)都乘以2,所得到的一組數(shù)據(jù)的平均數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,復(fù)數(shù)(1-i)•(1+i)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax(a>0且a≠1).
(1)當(dāng)a=e時,g(x)=mx2(m>0,x∈R),
①求H(x)=f(x)g(x)的單調(diào)增區(qū)間;
②當(dāng)x∈[-2,4]時,討論曲線y=f(x)與y=g(x)的交點個數(shù).
(2)若A,B是曲線y=f(x)上不同的兩點,點C是弦AB的中點,過點C作x軸的垂線交曲線y=f(x)于點D,kD是曲線y=f(x)在點D處的切線的斜率,試比較kD與kAB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別為F1(-1,0),F(xiàn)2(1,0),且經(jīng)過點(1,
3
2
),點A(xA,yA),(yA>0)是橢圓上一點,連接AF1,AF2并延長交橢圓于B,C兩點.
(1)求橢圓方程;
(2)若
AF1
=
5
3
F1B
,求點A坐標;
(3)當(dāng)B,C的縱坐標之比等于2時,求點A坐標.

查看答案和解析>>

同步練習(xí)冊答案