已知函數(shù)f(x)=1+x-+…+,則下列結(jié)論正確的是(  )
A.f(x)在(0,1)上恰有一個零點
B.f(x)在(0,1)上恰有兩個零點
C.f(x)在(-1,0)上恰有一個零點
D.f(x)在(-1,0)上恰有兩個零點
C
函數(shù)的導數(shù)為f′(x)=1-x+x2-…+x2012.當x∈(0,1)時,f′(x)>0,此時函數(shù)單調(diào)遞增.當x∈(-1,0)時,f′(x)>0,此時函數(shù)單調(diào)遞增.因為f(0)=1>0,所以函數(shù)在(0,1)上沒有零點.又f(-1)=1-1--…-<0,所以函數(shù)在(-1,0)上有且只有一個零點,所以選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求證:函數(shù)在(1,+∞)上是增函數(shù);
(2)當時,求函數(shù)在[1,e]上的最小值及相應的x值;
(3)若存在[l,e],使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

記函數(shù)fn(x)=a·xn-1(a∈R,n∈N*)的導函數(shù)為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設函數(shù)gn(x)=fn(x)-n2ln x,試問:是否存在正整數(shù)n使得函數(shù)gn(x)有且只有一個零點?若存在,請求出所有n的值;若不存在,請說明理由;
(3)若實數(shù)x0和m(m>0且m≠1)滿足,試比較x0與m的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

任何一個三次函數(shù)都有對稱中心.請你探究函數(shù),猜想它的對稱中心為_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)。
(1)當時,①求函數(shù)的單調(diào)區(qū)間;②求函數(shù)的圖象在點處的切線方程;
(2)若函數(shù)既有極大值,又有極小值,且當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=x-sinx-cosx的圖象在點A(x0,y0)處的切線斜率為1,則tanx0=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)當時,討論函數(shù)的單調(diào)性;
(2)當時,在函數(shù)圖象上取不同兩點A、B,設線段AB的中點為,試探究函數(shù)在Q點處的切線與直線AB的位置關系?
(3)試判斷當圖象是否存在不同的兩點A、B具有(2)問中所得出的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),函數(shù)的導函數(shù),且,其中為自然對數(shù)的底數(shù).
(1)求的極值;
(2)若,使得不等式成立,試求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(2012•廣東)曲線y=x3﹣x+3在點(1,3)處的切線方程為 _________ 

查看答案和解析>>

同步練習冊答案