19.下列函數(shù)中,在區(qū)間(1,+∞)上為增函數(shù)的是(  )
A.y=-2x+1B.$y=\frac{x}{1-x}$C.$y={log_{\frac{1}{2}}}(x-1)$D.y=-(x-1)2

分析 結(jié)合對數(shù)函數(shù),二次函數(shù),指數(shù)函數(shù)的單調(diào)性和導(dǎo)數(shù)法,分析各個函數(shù)的單調(diào)性,可得答案.

解答 解:函數(shù)y=-2x+1,y′=-ln2•2x<0在區(qū)間(1,+∞)上恒成立,故為減函數(shù),
函數(shù)$y=\frac{x}{1-x}$,y′=$\frac{1}{(1-{x)}^{2}}$>0在區(qū)間(1,+∞)上恒成立,故為增函數(shù),
函數(shù)$y=lo{g}_{\frac{1}{2}}(x-1)$在區(qū)間(1,+∞)上為減函數(shù),
函數(shù)y=-(x-1)2在區(qū)間(1,+∞)上為減函數(shù).
故選:B

點評 本題考查的知識點是對數(shù)函數(shù),二次函數(shù),指數(shù)函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知橢圓C:$\frac{x^2}{9}+\frac{y^2}{b^2}$=1(0<b<3)的左右焦點分別為E、F,過點F的直線交橢圓于A,B兩點,若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,且$\overrightarrow{AE}$•$\overrightarrow{BE}$=16.
(1)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓交于不同的兩點P,Q,判斷在x軸上是否存在定點N,使x軸平分∠PNQ,若存在,求出點N的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.有關(guān)正弦定理的敘述:
①正弦定理只適用于銳角三角形;
②正弦定理不適用于直角三角形;
③在某一確定的三角形中,各邊與它的對角的正弦的比是定值;
④在△ABC中,sinA:sinB:sinC=a:b:c.其中正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={x|0<ax-1≤5},B={x|-$\frac{1}{2}$<x≤2},
(Ⅰ)若a=1,求A∪B;
(Ⅱ)若A∩B=∅且a≥0,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知g(x)=(ax-$\frac{x}$-2a)ex(a>0),若存在x0∈(1,+∞),使得g(x0)+g'(x0)=0,則$\frac{a}$的取值范圍是( 。
A.(-1,+∞)B.(-1,0)C.(-2,+∞)D.(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在一個盒子里裝有6張卡片,上面分別寫著如下定義域為R的函數(shù):
f1(x)=x+1,f2(x)=x2,f3(x)=sinx,f4(x)=log2($\sqrt{{x^2}+1}$+x),f5(x)=cosx+|x|,f6(x)=xsinx-2.
(1)現(xiàn)在從盒子中任意取兩張卡片,記事件A為“這兩張卡片上函數(shù)相加,所得新函數(shù)是奇函數(shù)”,求事件A的概率;
(2)從盒中不放回逐一抽取卡片,若取到一張卡片上的函數(shù)是偶函數(shù)則停止抽取,否則繼續(xù)進行,記停止時抽取次數(shù)為ξ,寫出ξ的分布列,并求其數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知p:|4-x|≤6,q:x2-2x+1≤0(m>0),若非p是非q的必要而不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且滿足f(x)=3xf'(1)+2lnx,則f'(1)=(  )
A.-eB.-1C.1D.e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx-mx+m,(m∈R),x∈[0,$\frac{π}{2}$].
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)≤0對任意x∈(0,+∞)恒成立,求實數(shù)m值;
(3)在(2)的條件下,若0<a<b,證明:$\frac{f(b)-f(a)}{lnb-lna}$<1-a.

查看答案和解析>>

同步練習(xí)冊答案