【題目】國(guó)內(nèi)某汽車(chē)品牌一個(gè)月內(nèi)被消費(fèi)者投訴的次數(shù)用表示,據(jù)統(tǒng)計(jì),隨機(jī)變量的概率分布如下:
(1)求的值;
(2)假設(shè)一月與二月被消費(fèi)者投訴的次數(shù)互不影響,求該汽車(chē)品牌在這兩個(gè)月內(nèi)被消費(fèi)者投訴次的概率.
【答案】(1)a=0.2,(2)0.17.
【解析】試題分析:(1)根據(jù)分布列的性質(zhì)可得0.1+0.3+2a+a=1(2)根據(jù)題意問(wèn)題將分為兩類(lèi)“兩個(gè)月內(nèi)有一個(gè)月被投訴2次,另外一個(gè)月被投訴0次”, “兩個(gè)月內(nèi)每月均被投訴1次”然后根據(jù)投訴概率列式解答
試題解析:
解:(1)由概率分布的性質(zhì)有0.1+0.3+2a+a=1,解答a=0.2,
所以X的概率分布為
X | 0 | 1 | 2 | 3 |
P | 0.1 | 0.3 | 0.4 | 0.2 |
(2)設(shè)事件A表示“兩個(gè)月內(nèi)共被投訴2次”,事件表示“兩個(gè)月內(nèi)有一個(gè)月被投訴2次,另外一個(gè)月被投訴0次”,事件表示“兩個(gè)月內(nèi)每月均被投訴1次”
則由事件的獨(dú)立性得 ,
所以.
故該企業(yè)在這兩個(gè)月內(nèi)共被消費(fèi)者投訴2次的概率為0.17.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,與直角坐標(biāo)系取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)化曲線(xiàn)的方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);
(2)設(shè)曲線(xiàn)與軸的一個(gè)交點(diǎn)的坐標(biāo)為,經(jīng)過(guò)點(diǎn)作斜率為1的直線(xiàn), 交曲線(xiàn)于兩點(diǎn),求線(xiàn)段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若,曲線(xiàn)在處的切線(xiàn)過(guò)點(diǎn),求的值;
②若,求在區(qū)間上的最大值.
(2)設(shè)在, 兩處取得極值,求證: , 不同時(shí)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市要建成宜商、宜居的國(guó)際化新城,該城市的東城區(qū)、西城區(qū)分別引進(jìn)8個(gè)廠(chǎng)家,現(xiàn)對(duì)兩個(gè)區(qū)域的16個(gè)廠(chǎng)家進(jìn)行評(píng)估,綜合得分情況如莖葉圖所示.
(1)根據(jù)莖葉圖判斷哪個(gè)區(qū)域廠(chǎng)家的平均分較高;
(2)規(guī)定85分以上(含85分)為優(yōu)秀廠(chǎng)家,若從該兩個(gè)區(qū)域各選一個(gè)優(yōu)秀廠(chǎng)家,求得分差距不超過(guò)5分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中有個(gè)黃色、個(gè)白色的乒乓球,做不放回抽樣,每次任取個(gè)球,取次,則關(guān)于事件“直到第二次才取到黃色球”與事件“第一次取到白球的情況下,第二次恰好取得黃球”的概率說(shuō)法正確的是( )
A. 事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率都等于
B. 事件“直到第二次才取到黃色球”與事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率都等于
C. 事件“直到第二次才取到黃色球”的概率等于,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于
D. 事件“直到第二次才取到黃色球”的概率等于,事件“第一次取得白球的情況下,第二次恰好取得黃球”的概率等于
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,圓的直角坐標(biāo)方程為,直線(xiàn)的參數(shù)方程為(為參數(shù)),射線(xiàn)的極坐標(biāo)方程為.
(1)求圓和直線(xiàn)的極坐標(biāo)方程;
(2)已知射線(xiàn)與圓的交點(diǎn)為,與直線(xiàn)的交點(diǎn)為,求線(xiàn)段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)在軸上,且橢圓的焦距為2.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),過(guò)作軸且與橢圓交于另一點(diǎn), 為橢圓的右焦點(diǎn),求證:三點(diǎn)在同一條直線(xiàn)上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年“一帶一路”國(guó)際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會(huì)議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪(fǎng)問(wèn)了80人,經(jīng)過(guò)統(tǒng)計(jì),得到如下丟失數(shù)據(jù)的列聯(lián)表:(,表示丟失的數(shù)據(jù))
無(wú)意愿 | 有意愿 | 總計(jì) | |
男 | 40 | ||
女 | 5 | ||
總計(jì) | 25 | 80 |
(1)求出的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);
(2)若表中無(wú)意愿做志愿者的5個(gè)女同學(xué)中,3個(gè)是大學(xué)三年級(jí)同學(xué),2個(gè)是大學(xué)四年級(jí)同學(xué).現(xiàn)從這5個(gè)同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個(gè)同學(xué)是同年級(jí)的概率.
附參考公式及數(shù)據(jù): ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線(xiàn)的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為(為參數(shù)).
(Ⅰ)寫(xiě)出直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線(xiàn)經(jīng)過(guò)伸縮變換得到曲線(xiàn),若點(diǎn),直線(xiàn)與交與, ,求, .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com