已知函數(shù)f(x)=Asin(ωx+φ),(ω>0,A>0,φ∈(0,
π
2
))的部分圖象如圖所示,其中點P是圖象的一個最高點.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)已知α∈(π,
2
),且f(
α
2
-
12
)=
12
13
,求f(
α
2
).
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)由函數(shù)f(x)=Asin(ωx+φ)的圖象易知A=2,T=π,從而可求得ω=2;由ω•
π
12
+φ=2kπ+
π
2
,k∈Z,及φ∈(0,
π
2
)可求得φ=
π
3
,于是可得函數(shù)f(x)的解析式;
(Ⅱ)化簡f(
α
2
-
12
)=-cosα,依題意知cosα=-
6
13
,α∈(π,
2
),易求sinα=-
133
13
,從而可求得f(
α
2
)=2sin(2×
α
2
+
π
3
)的值.
解答: 解:(Ⅰ)由圖知,A=2,T=4[
π
12
-(-
π
6
)]=π,
ω
=π,得ω=2;
又ω•
π
12
+φ=2kπ+
π
2
,k∈Z,及φ∈(0,
π
2
)得φ=
π
3
,
∴f(x)=2sin(2x+
π
3
);
(Ⅱ)∵f(
α
2
-
12
)=2sin[2(
α
2
-
12
)+
π
3
]=2sin(α-
π
2
)=-2cosα=
12
13
,
∴cosα=-
6
13
,又由α∈(π,
2
)知,sinα<0,
∴sinα=-
1-cos2α
=-
1-(-
6
13
)
2
=-
133
13
,
∴f(
α
2
)=2sin(2×
α
2
+
π
3
)=2(sinαcos
π
3
+cosαsin
π
3

=2(-
133
13
×
1
2
-
6
13
×
3
2

=-
133
+6
3
13
點評:本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查誘導(dǎo)公式與兩角和的余弦的應(yīng)用,考查轉(zhuǎn)化思想與運算求解能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)可導(dǎo),則
lim
△x→0
f(15+3△x)-f(15)
△x
等于( 。
A、f′(15)
B、3f′(15)
C、
1
3
f′(15)
D、f′(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:
2
1-logax
≥2logax+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校為測評班級學(xué)生對任課教師的滿意度,采用“100分制”打分的方式來計分.現(xiàn)從某班學(xué)生中隨機抽取10名,以下莖葉圖記錄了他們對某教師的滿意度分?jǐn)?shù)(以十位數(shù)字為莖,個位數(shù)字為葉):
(Ⅰ)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)若滿意度不低于98分,則評價該教師為“優(yōu)秀”.求從這10人中隨機選取3人,至多有1人評價該教師是“優(yōu)秀”的概率;
(Ⅲ)以這10人的樣本數(shù)據(jù)來估計整個班級的總體數(shù)據(jù),若從該班任選3人,記ξ表示抽到評價該教師為“優(yōu)秀”的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的方程式
x2
a2
+
y2
b2
=1(a>b>0),離心率為
3
3
,且經(jīng)過點(
6
2
,1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)圓O的方程是x2+y2=a2+b2,過圓O上任意一點P作橢圓C的兩條切線,若切線的斜率都存在,分別記為k1,k2,求k1×k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程組
(x-2)3+2x+sin(x-2)=2
(y-2)3+2y+sin(y-2)=6
,求x+y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=
1(a>b>0)
的離心率是
3
3
,它被直線x-y-1=0截得的弦長是
8
3
5
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|-2≤x≤5},B={x|m+1
1
2
x≤2m-1
},B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線L1的傾斜角為α,α∈(0,
π
2
),L1繞其上一點P沿逆時針方向旋轉(zhuǎn)α角得到直線L2,L2的縱截距為-2,L2繞P點沿逆時針方向旋轉(zhuǎn)
π
2
-α角得到直線L3:x+2y-1=0,則L1的方程為
 

查看答案和解析>>

同步練習(xí)冊答案