【題目】設{an}的首項為a1 , 公差為﹣1的等差數列,Sn為其前n項和,若S1 , S2 , S4成等比數列,則a1=( )
A.2
B.﹣2
C.
D.﹣
科目:高中數學 來源: 題型:
【題目】已知兩點分別在軸和軸上運動,且,若動點滿足.
(1)求出動點P的軌跡對應曲線C的標準方程;
(2)一條縱截距為2的直線與曲線C交于P,Q兩點,若以PQ直徑的圓恰過原點,求出直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義在區(qū)間D上的函數f(x),若存在閉區(qū)間[a,b]D和常數c,使得對任意x1∈[a,b],都有f(x1)=c,且對任意x2∈D,當x2[a,b]時,f(x2)<c恒成立,則稱函數f(x)為區(qū)間D上的“平頂型”函數.給出下列結論:
①“平頂型”函數在定義域內有最大值;
②函數f(x)=x-|x-2|為R上的“平頂型”函數;
③函數f(x)=sin x-|sin x|為R上的“平頂型”函數;
④當t≤時,函數f(x)=是區(qū)間[0,+∞)上的“平頂型”函數.
其中正確的結論是________.(填序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(1)證明:MN∥平面PAB;
(2)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD, .
(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列的首項,且,,.
(Ⅰ)證明:是等比數列;
(Ⅱ)若,數列中是否存在連續(xù)三項成等差數列?若存在,寫出這三項,若不存在說明理由.
(Ⅲ)若是遞增數列,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com