【題目】1)若數(shù)列的前n項和,求數(shù)列的通項公式.

2)若數(shù)列的前n項和,證明為等比數(shù)列.

【答案】(1);(2)見解析

【解析】

(1)應用 (n求解,再驗證,進而列出數(shù)列的通項公式.

(2)應用 (n,求得bn-1的關(guān)系,進而證明 為等比數(shù)列.

(1) 當n≥2時,an=Sn-Sn-1=3n2-2n+1-[3(n-1)2-2(n-1)+1]=6n-5,

n=1時,a1S1=3×12-2×1+1=2;

顯然當n=1時,不滿足上式.

故數(shù)列的通項公式為

(2)證明:由Tnbn,得當n≥2時,Tn-1bn-1,

兩式相減,得bnbnbn-1,

∴當n≥2時,bn=-2bn-1,

又n=1時,T1=b1b1,∴b1=1,

∴bn=(-2)n-1.b1=1,公比q=-2的等比數(shù)列.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】己知拋物線的焦點為,準線與軸的交點為,過點的直線,拋物線相交于不同的兩點.

(1)若,求直線的方程;

(2)若點在以為直徑的圓外部,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,則CD與平面BDC1所成角的正弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè){an}的首項為a1 , 公差為﹣1的等差數(shù)列,Sn為其前n項和,若S1 , S2 , S4成等比數(shù)列,則a1=(
A.2
B.﹣2
C.
D.﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1﹣an=2,等比數(shù)列{bn}滿足b1=a1 , b4=a4+1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=an+bn , 求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsin(θ+ )= a,曲線C2的參數(shù)方程為 (θ為參數(shù)).
(1)求C1的直角坐標方程;
(2)當C1與C2有兩個公共點時,求實數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:三棱錐P﹣ABC中,PA⊥底面ABC,若底面ABC是邊長為2的正三角形,且PB與底面ABC所成的角為 .若M是BC的中點,求:

(1)三棱錐P﹣ABC的體積;
(2)異面直線PM與AC所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=3,a2=5,{an}的前n項和Sn , 且滿足Sn+Sn2=2Sn1+2n1(n≥3).
(1)試求數(shù)列{an}的通項公式;
(2)令bn= ,Tn是數(shù)列{bn}的前n項和,證明:Tn ;
(3)證明:對任意給定的m∈(0, ),均存在n0∈N+ , 使得當n≥n0時,(2)中的Tn>m恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}是等差數(shù)列,若 <﹣1,且它的前n項和Sn有最大值,那么當Sn取的最小正值時,n=(
A.11
B.17
C.19
D.21

查看答案和解析>>

同步練習冊答案