6.若s1=
π
2
0
cosxdx,s2=
2
 
1
1
x
dx,s3=
2
 
1
exdx 則s1,s2,s3的大小關(guān)系是(  )
A、s2<s1<s3
B、s1<s2<s3
C、s2<s3<s1
D、s3<s2<s1
考點:定積分,不等式比較大小
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先利用積分基本定理計算三個定積分,再比較它們的大小即可.
解答: 解:s1=
π
2
0
cosxdx=sinx|
 
π
2
0
=1,s2=
2
 
1
1
x
dx=lnx|
 
2
1
=ln2,s3=
2
 
1
exdx=ex|
 
2
1
=e(e-1),
∵ln2<1<e2-e,
∴S2<S1<S3
故選:A
點評:本小題主要考查定積分的計算、不等式的大小比較等基礎(chǔ)知識,考查運算求解能力.屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|a≤x≤a+2},集合B={x|x<-1或x>3},分別就下列條件求實數(shù)a的取值范圍:
(1)A∩B=A.
(2)A∩B≠∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查城市PM2.5的情況,按地域把48個城市分成大型、中型、小型三組,對應(yīng)的城市數(shù)分別為8,16,24.若用分層抽樣的方法抽取12個城市,則中型組中應(yīng)抽取的城市數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x2
2
+y2=1的左右焦點分別為F1、F2,直線l過點F1與橢圓交于A、B兩點,求△ABF2面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)其中A>0,ω>0,0<φ<
π
2
的圖象如圖所示.則函數(shù)y=f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+θ),函數(shù)f(x)的圖象關(guān)于點(
π
2
,0)對稱,并在x=π處取得最小值,則正實數(shù)ω的值構(gòu)成的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在上的奇函數(shù),當(dāng)x>0時,f(x)=x(1-x2)那么方程f(x)=0的實數(shù)跟個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),(x≠0)對于任意的x,y∈R且x,y≠0滿足f(xy)=f(x)+f(y).
(Ⅰ)求f(1),f(-1)的值;
(Ⅱ)判斷函數(shù)y=f(x),(x≠0)的奇偶性;
(Ⅲ)若函數(shù)y=f(x)在(0,+∞)上是增函數(shù),解不等式f(
1
6
x)+f(x-5)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖程序框圖中,如果輸出的結(jié)果P∈(400,4000),那么輸入的正整數(shù)N應(yīng)為
 

查看答案和解析>>

同步練習(xí)冊答案