【題目】已知過拋物線y2=2px(p>0)的焦點,斜率為2的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點,且|AB|=9.
(1)求該拋物線的方程.
(2)O為坐標原點,C為拋物線上一點,若,求λ的值
【答案】(1) y2=8x (2)λ=0或λ=2.
【解析】
試題分析:(1)直線AB的方程與y2=2px聯(lián)立,有,從而,再由拋物線定義得:|AB|=,求得p,則拋物線方程可得;(2)由p=4,求得.再求得設的坐標,最后代入拋物線方程即可解得λ
試題解析:(1)直線AB的方程是,與y2=2px聯(lián)立,
從而有4x2-5px+p2=0,所以x1+x2=,
由拋物線定義得:|AB|=x1+x2+p=9,
所以p=4,從而拋物線方程是y2=8x.
(2)由p=4,4x2-5px+p2=0可簡化為x2-5x+4=0,從而x1=1,x2=4,
y1=-2,y2=4,從而A(1,-2),B(4,4);
設O=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2),
又y32=8x3,即[2 (2λ-
即(2λ-1)2=4λ+1,解得λ=0或λ=2.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形中, , 為邊的中點,將沿直線翻轉成.若為線段的中點,則在翻折過程中:
①是定值;②點在某個球面上運動;
③存在某個位置,使;④存在某個位置,使平面.
其中正確的命題是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為.
(Ⅰ)若為等邊三角形,求橢圓的方程;
(Ⅱ)若橢圓的短軸長為,過點的直線與橢圓相交于兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對任意實數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當t∈[﹣1,3]時,求y=f(2t)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點 P 與定點的距離和它到定直線 x 4 的距離的比是1: 2 ,記動點 P 的軌跡為曲線 E.
(1)求曲線 E 的方程;
(2)設 A 是曲線 E 上的一個點,直線 AF 交曲線 E 于另一點 B,以 AB 為邊作一個平行四邊形,頂點 A、B、C、D 都在軌跡 E 上,判斷平行四邊形 ABCD 能否為菱形,并說明理由;
(3)當平行四邊形 ABCD 的面積取到最大值時,判斷它的形狀,并求出其最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中, 平面, // , , , 分別為
線段, 的中點.
(Ⅰ)求證: //平面;
(Ⅱ)求證: 平面;
(Ⅲ)寫出三棱錐與三棱錐的體積之比.(結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)求實數(shù)a的范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調函數(shù).
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某社區(qū)超市購進了A,B,C,D四種新產品,為了解新產品的銷售情況,該超市隨機調查了15位顧客(記為)購買這四種新產品的情況,記錄如下(單位:件):
顧 客 產 品 | |||||||||||||||
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若該超市每天的客流量約為300人次,一個月按30天計算,試估計產品A的月銷售量(單位:件);
(Ⅱ)為推廣新產品,超市向購買兩種以上(含兩種)新產品的顧客贈送2元電子紅包.現(xiàn)有甲、乙、丙三人在該超市購物,記他們獲得的電子紅包的總金額為X,
求隨機變量X的分布列和數(shù)學期望;
(Ⅲ)若某顧客已選中產品B,為提高超市銷售業(yè)績,應該向其推薦哪種新產品?(結果不需要證明)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com