20.過雙曲線$\frac{x^2}{4}$-$\frac{y^2}{2}$=1的右焦點F作直線l交雙曲線于A?B兩點,若|AB|=5,則這樣的直線l有( 。
A.1條B.2條C.3條D.4條

分析 先看當A、B都在左支上時,若AB垂直x軸,根據(jù)雙曲線方程求得焦點的坐標,把焦點橫坐標代入雙曲線方程求得交點的縱坐標,進而求得AB的長小于5,則考慮不垂直于x軸的兩條;再看若A、B分別在兩支先看A,B為兩頂點時,不符合題意進而可推斷出符合題意的直線有兩條,最后綜合可得答案.

解答 解:①若A、B都在右支,
若AB垂直x軸,a2=4,b2=2,c2=6,所以F($\sqrt{6}$,0)
則AB:x=$\sqrt{6}$,
代入雙曲線線$\frac{x^2}{4}$-$\frac{y^2}{2}$=1求得y=±$\frac{4}{\sqrt{6}}$,
所以AB=|y1-y2|=$\frac{8}{\sqrt{6}}$<5,不成立;
若A,B不垂直于x軸,則有兩條直線滿足;
②若A、B分別在兩支,
a=2,所以頂點距離為2+2=4<5,所以|AB|=5有兩條,關(guān)于x軸對稱.
所以一共4條.
故選:D.

點評 本題主要考查了雙曲線的對稱性和直線與雙曲線的關(guān)系.考查了學生分析推理和分類討論思想的運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知圓C1:(x+2)2+(y-1)2=4與圓C2:(x-3)2+(y-4)2=4,過點P(-1,5)作兩條互相垂直的直線l1:y=k(x+1)+5,l2:y=-$\frac{1}{k}$(x+1)+5.
(1)若k=2時,設(shè)l1與圓C1交于A、B兩點,求經(jīng)過A、B兩點面積最小的圓的方程.
(2)若l1與圓C1相交,求證:l2與圓C2相交,且l1被圓C1截得的弦長與l2被圓C2截得的弦長相等.
(3)是否存在點Q,過Q的無數(shù)多對斜率之積為1的直線l3,l4,l3被圓C1截得的弦長與l4被圓C2截得的弦長相等.若存在求Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx-$\frac{1}{x}$,g(x)=-ax+b.
(I)討論函數(shù)h(x)=f(x)-g(x)單調(diào)區(qū)間;
(II)若直線g(x)=-ax+b是函數(shù)f(x)=lnx-$\frac{1}{x}$圖象的切線,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知直線l1的方程為3x+4y-7=0,直線l2的方程為6x+8y+1=0,則直線l1與l2的距離為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.2013年4月初眉山市“體彩杯”中小學生田徑運動會圓滿落幕,市文體局舉行表彰大會.某校有男運動員6名,女運動員4名,其中男女隊長各1人,從中選5人參加表彰會,下列情形各有多少種選派方法(結(jié)果用數(shù)字作答).
(1)男3名,女2名                 
(2)隊長至少有1人參加
(3)至少1名女運動員              
(4)既要有隊長,又要有女運動員.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù)且f(x)-g(x)=x3+x2+1,則g(-1)=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.從某學校的800名男生中隨機抽取50名測量身高,被測學生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4人.
(1)求第七組的頻率,并估計該校的800名男生的身高的中位數(shù)以及身高在180cm以上(含180cm)的人數(shù);
(2)若從身高屬于第六組和第八組的男生中隨機抽取兩名男生,求他們的身高之差不超過5的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知:p:|x+1|≤3,q:x2-2x+1-m2≤0,m>0.
(Ⅰ)若m=2,命題“p或q”為真,“p且q”為假,求實數(shù)x的取值范圍;
(Ⅱ)若p是q的必要不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{18}$=1(a>0)的左右焦點,過F1的直線l與雙曲線的左支交于點B,與右支交于點A,若△ABF2為等邊三角形,則△BF1F2的面積為( 。
A.$6\sqrt{3}$B.$8\sqrt{3}$C.$18\sqrt{3}$D.$8\sqrt{2}$

查看答案和解析>>

同步練習冊答案