某地區(qū)對用戶用電推出兩種收費辦法,供用戶選擇使用:一是按固定電價收;二是按分時電價收取在固定電價的基礎(chǔ)上,用電高峰時段電價每千瓦時上浮0.03元;非用電高峰時段時段電價每千瓦時下浮0.25元.若一用戶某月用電高峰時段用電140千瓦時,非用電高峰時段用電60千瓦時,則相對于固定電價收費該月( 。
A、多付電費10.8元
B、少付電費10.8元
C、少付電費15元
D、多付電費4.2元
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:通過讀題可求得用電高峰時段的140千瓦時多付4.2元,非用電高峰時段的60千瓦時少付15元,所以總共少付10.8元.
解答: 解:由題意知:高峰時段的140千瓦時多付:140×0.03=4.2(元)
非用電高峰時段的60千瓦時少付:60×0.25=15(元).
相對于固定電價收費該月少付:15-4.2=10.8(元).
故選:B.
點評:能讀懂題意是求解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如果將函數(shù)y=
3
cos2x+sin2x(x∈R)的圖象向左平移m(m>0)個單位后,所得圖象對應(yīng)的函數(shù)為偶函數(shù),那么m的最小值為(  )
A、
π
12
B、
π
6
C、
π
3
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2-4
,x∈[2,+∞)
2-x,x∈(-∞,2)
,若關(guān)于x的方程f(x)-kx+k=0有且只有一個實根,則實數(shù)k的取值范圍是( 。
A、k≤0或k>1
B、k>1或k=0或k<-1
C、k>
2
3
3
或k=0或k<-1
D、k>
2
3
3
或k=0或k<-
2
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
x
,x≥2
(x-1)3,x<2
若關(guān)于x 的方程f(x)=kx有兩個不同的實根,則數(shù)k的取值范圍是( 。
A、(0,1)
B、[0,2]
C、(0,1]
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
log2x                 x≥1
-x2+4ax-2a    x<1
,則“a=
1
2
”是“函數(shù)f(x)在R上遞增”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關(guān)于x的方程x2+ax+a2-1=0有一個正根和一個負根,則實數(shù)a的取值范圍為( 。
A、-
2
3
3
≤a≤
2
3
3
B、-
2
3
3
<a<
2
3
3
C、-1≤a≤1
D、-1<a<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
lnx
x
的單調(diào)遞減區(qū)間是( 。
A、[e,+∞)
B、[1,+∞)
C、(0,e]
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinx是( 。
A、最小正周期為2π的偶函數(shù)
B、最小正周期為π的偶函數(shù)
C、最小正周期為2π的奇函數(shù)
D、最小正周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求出下列各函數(shù)解析式
(1)已知函數(shù)f(
x
+1)=x-2
x
,求函數(shù)f(x)的解析式;
(2)已知函數(shù)f(x)是一次函數(shù),且2f(x+1)-f(x-1)=2x+9,求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習冊答案