【題目】已知圓,直線過定點(diǎn).

與圓相切,求的方程;

與圓相交于兩點(diǎn),求的面積的最大值,并求此時(shí)直線的方程.(其中點(diǎn)C是圓C的圓心)

【答案】(1) (2) ,

【解析】試題分析:直線l無斜率時(shí),直線l的方程為x=1,成立;直線l有斜率時(shí),設(shè)方程為kx-y-k=0,由圓心到直線的距離等于半徑,能求出直線l的方程.
CPQ面積最大時(shí),CPQ是等腰直角三角形,此時(shí)圓心到直線的距離為,設(shè)直線l的方程為kx-y-k=0,由此能求出直線l的方程.

試題解析:

直線無斜率時(shí),直線的方程為,此時(shí)直線和圓相切

直線有斜率時(shí),設(shè)方程為,利用圓心到直線的距離等于半徑得: ,直線方程為

面積最大時(shí), , ,即是等腰直角三角形,由半徑得:圓心到直線的距離為

設(shè)直線的方程為:,

直線方程為:,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)已知函數(shù)f(x)對任意的實(shí)數(shù)m,n都有:f(mn)=f(m)+f(n)-1,

且當(dāng)x>0時(shí),有f(x)>1.

(1)求f(0).

(2)求證:f(x)在R上為增函數(shù).

(3)若f(1)=2,且關(guān)于x的不等式f(ax-2)+f(xx2)<3對任意的x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB+bcosA= csinC.
(1)求cosC;
(2)若a=6,b=8,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)等比數(shù)列{an}滿足a7=a6+2a5 , 若存在兩項(xiàng)am , an使得 ,則 的最小值為(
A.
B.
C.
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>,若存在非零實(shí)數(shù)滿足對任意,均有,且,則稱上的高調(diào)函數(shù). 如果定義域?yàn)?/span>的函數(shù)是奇函數(shù),當(dāng)時(shí),,且上的8高調(diào)函數(shù),那么實(shí)數(shù)的取值范圍為____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有紅球3個(gè)、白球2個(gè)、黑球1個(gè),從中任取2個(gè),則互斥而不對立的兩個(gè)事件是( )

A. 至少有一個(gè)白球;至少有一個(gè)紅球 B. 至少有一個(gè)白球;紅、黑球各一個(gè)

C. 恰有一個(gè)白球;一個(gè)白球一個(gè)黑球 D. 至少有一個(gè)白球;都是白球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某學(xué)校的名男生中隨機(jī)抽取名測量身高,被測學(xué)生身高全部介于之間,將測量結(jié)果按如下方式分成八組:第一組,第二組,第八組,下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為人。

)求第七組的頻率;

)估計(jì)該校的名男生的身高的中位數(shù)以及身高在以上(含)的人數(shù);

)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為,事件,事件,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合 ,P={x|﹣1≤x≤4},則(UM)∩P等于(
A.{x|﹣4≤x≤﹣2}
B.{x|﹣1≤x≤3}
C.{x|3≤x≤4}
D.{x|3<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)對任意的, ,恒有,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案