【題目】已知F為橢圓C: + =1的右焦點(diǎn),橢圓C上任意一點(diǎn)P到點(diǎn)F的距離與點(diǎn)P到直線l:x=m的距離之比為 ,求:
(1)直線l方程;
(2)設(shè)A為橢圓C的左頂點(diǎn),過點(diǎn)F的直線交橢圓C于D、E兩點(diǎn),直線AD、AE與直線l分別相交于M、N兩點(diǎn).以MN為直徑的是圓是否恒過一定點(diǎn),若是,求出定點(diǎn)坐標(biāo),若不是請說明理由.
【答案】
(1)解:由橢圓C: + =1,可得a=2,c=1,右焦點(diǎn)F(1,0),其離心率e= .
∵橢圓C上任意一點(diǎn)P到點(diǎn)F的距離與點(diǎn)P到直線l:x=m的距離之比為 ,
∴ =4.
∴直線l方程為:x=4
(2)解:當(dāng)DE⊥x軸時,把x=1代入橢圓方程解得y= ,∴D ,E .
可得直線AD的方程:y= ,解得M(4,3),同理可得N(4,﹣3),
可得以MN為直徑的圓過點(diǎn)F(1,0),G(7,0).
下面證明以MN為直徑的圓恒過上述兩定點(diǎn).
證明:設(shè)直線DE的方程為:my=x﹣1,D(x1,y1),E(x2,y2).
聯(lián)立 ,化為(3m2+4)y2+6my﹣9=0,
∴y1+y2=﹣ ,y1y2= .
直線AD的方程為:y= ,可得M ,
同理可得N .
∴ = =9+
=9+ =9﹣9=0,
∴以MN為直徑的圓恒過一定點(diǎn)F(1,0),G(7,0).
同理可證:以MN為直徑的圓恒過一定點(diǎn)G(7,0).
因此以MN為直徑的圓恒過一定點(diǎn)F(1,0),(7,0).
【解析】(1)利用橢圓的標(biāo)準(zhǔn)方程及其橢圓的第二定義即可得出;(2)當(dāng)DE⊥x軸時,把x=1代入橢圓方程解得D ,E .可得直線AD的方程:y= ,解得M,N,可得以MN為直徑的圓過點(diǎn)F(1,0),G(7,0). 下面證明以MN為直徑的圓恒過上述兩定點(diǎn).設(shè)直線DE的方程為:my=x﹣1,D(x1 , y1),E(x2 , y2).與橢圓方程聯(lián)立化為(3m2+4)y2+6my﹣9=0,直線AD的方程為:y= ,可得M ,同理可得N .利用根與系數(shù)的關(guān)系可證明 =0,即可得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b為兩條直線,α,β為兩個平面,下列四個命題中,正確的命題是( )
A.若a,b與α所成的角相等,則α∥b
B.若a∥α,b∥β,α∥β,則a∥b
C.若aα,bβ,α∥b,則α∥β
D.若a⊥α,b⊥β,α⊥β,是a⊥b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體檢表,學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對年級名次在1~50名和951~1000名的學(xué)生進(jìn)行了調(diào)查,得到如下數(shù)據(jù):
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系?
(2)根據(jù)表中數(shù)據(jù),在調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了9人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,并且在這9人中任取3人,記名次在1~50名的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
年級名次 | 1~50 | 951~1000 |
近視 | 41 | 32 |
不近視 | 9 | 18 |
附:P(K2≥3.841=0.05)K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=0時,求f(x)的極值.
(2)當(dāng)a≠0時,若f(x)是減函數(shù),求a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=cos(ωx+φ)(ω>0,﹣ <φ<0)的最小正周期為π,且f( )= .
(1)求ω和φ的值;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求f(x)在[0, ]上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|y= },B={x|log2x≤1},則A∩B=( )
A.{x|﹣3≤x≤1}
B.{x|0<x≤1}
C.{x|﹣3≤x≤2}
D.{x|x≤2}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com