【題目】如圖1在、分別為線段的中點(diǎn),為折痕,折起到圖2的位置,使平面⊥平面,連接,,設(shè)是線段上的動(dòng)點(diǎn),滿足

(1)證明:平面⊥平面;

(2)若二面角的大小為的值

【答案】(1)證明見解析;(2).

【解析】

試題分析:(1)由已知得,平面,從而,由,得,由此能證明平面⊥平面;(2)為坐標(biāo)原點(diǎn),,分別為,,軸建立空間直角坐標(biāo)系,求得平面一個(gè)法向量為,又知平面的法向量為,由此利用空間向量夾角余弦公式余弦公式能求出.

試題解析:(1)平面平面,

平面,,

,分別為中點(diǎn),

,,

在直角三角形,

,可得

平面,

平面

平面⊥平面

(2)以為坐標(biāo)原點(diǎn),,分別為,軸建立空間直角坐標(biāo)系,

各點(diǎn)坐標(biāo)分別為,,,

,,

,

設(shè)平面的法向量為,,,

,

平面的法向量為,

,化為解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地政府調(diào)查了工薪階層人的月工資收人,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖,其中工資收人分組區(qū)間是.(單位:百元)

(1)為了了解工薪階層對(duì)工資收人的滿意程度,要用分層抽樣的方法從調(diào)查的人中抽取人做電話詢問,求月工資收人在內(nèi)應(yīng)抽取的人數(shù);

(2)根據(jù)頻率分布直方圖估計(jì)這人的平均月工資為多少元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1當(dāng)時(shí),求的單調(diào)區(qū)間;

2設(shè),是曲線圖象上的兩個(gè)相異的點(diǎn),若直線的斜率恒成立,求實(shí)數(shù)的取值范圍.

3設(shè)函數(shù)有兩個(gè)極值點(diǎn),,若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)定義域?yàn)?/span>,且對(duì)任意實(shí)數(shù),有,則稱為“形函數(shù)”,若函數(shù)定義域?yàn)?/span>,函數(shù)對(duì)任意恒成立,且對(duì)任意實(shí)數(shù),有,則稱為“對(duì)數(shù)形函數(shù)” .

(1)試判斷函數(shù)是否為“形函數(shù)”,并說(shuō)明理由;

(2)若是“對(duì)數(shù)形函數(shù)”,求實(shí)數(shù)的取值范圍;

(3)若是“形函數(shù)”,且滿足對(duì)任意,有,問是否為“對(duì)數(shù)形函數(shù)”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù).

1討論的單調(diào)性;

2若函數(shù)的圖象與直線交于兩點(diǎn),線段中點(diǎn)的橫坐標(biāo)為,證明: 為函數(shù)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表提供了某廠生產(chǎn)某產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù):

2

4

6

8

10

4

5

7

9

10

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)生產(chǎn)20噸該產(chǎn)品的生產(chǎn)能耗是多少噸標(biāo)準(zhǔn)煤?

附:回歸直線的斜率和截距的最小二乘估計(jì)分別為: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若存在極值點(diǎn),且,其中,求證: ;

(Ⅲ)設(shè),函數(shù),求證: 在區(qū)間上最大值不小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程.

已知曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)若直線的極坐標(biāo)方程為,求直線被曲線截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班名男同學(xué), 名女同學(xué)中隨機(jī)抽取一個(gè)容量為的樣本進(jìn)行分析.

(1)如果按性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(只要求寫出計(jì)算式即可,不必計(jì)算出結(jié)果)

(2)隨機(jī)抽取位,他們的數(shù)學(xué)分?jǐn)?shù)從小到大排序是: ,物理分?jǐn)?shù)從小到大排序是: .

①若規(guī)定分以上(包括分)為優(yōu)秀,求這位同學(xué)中恰有位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;

②若這位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)事實(shí)上對(duì)應(yīng)如下表:

根據(jù)上表數(shù)據(jù),由變量的相關(guān)系數(shù)可知物理成績(jī)與數(shù)學(xué)成績(jī)之間具有較強(qiáng)的線性相關(guān)關(guān)系,現(xiàn)求的線性回歸方程(系數(shù)精確到).

參考公式:回歸直線的方程是: ,其中對(duì)應(yīng)的回歸估計(jì)值

參考數(shù)據(jù): , , ,, ,.

查看答案和解析>>

同步練習(xí)冊(cè)答案