函數(shù)y=sin(ωx+
π
6
)(ω>0)
的圖象關(guān)于直線x=
π
3
對稱,則ω的最小值為
 
考點:正弦函數(shù)的對稱性
專題:計算題
分析:由題意說明x=
π
3
時,函數(shù)取得最值,推出ω的最小值.
解答: 解:因為函數(shù)y=sin(ωx+
π
6
)(ω>0)
的圖象關(guān)于直線x=
π
3
對稱,
所以ω×
π
3
+
π
6
=kπ+
π
2
,k∈Z,
因為ω>0,k=0時,ω的最小值為:1.
故答案為:1.
點評:本題考查三角函數(shù)的對稱性的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-8x+4y+16=0,直線l過定點(4,0).
(1)若直線l與方向向量為a=(1,3)的直線l1垂直,求原點到直線l的距離
(2)直線l與圓C相交于A,B兩點,若△ABC的面積為
8
5
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)點A(p,q)在|p|≤3,|q|≤3范圍內(nèi)均勻分布,求一元二次方程x2-2px-q2+1=0有實根的概率.
(2)p是從0,1,2,3四個數(shù)中任取的一個數(shù),q是從0,1,2,三個數(shù)中任取的一個數(shù),求上述x2-2px-q2+1=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有大小形狀完全相同的標(biāo)號為i的i個球(i=1,2,3),現(xiàn)從中隨機取出2個球,則取出的這兩個球的標(biāo)號數(shù)之和為4的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個正方體紙盒的展開圖,若把1,2,3,4,5,6分別填入小正方形內(nèi),按虛線折成正方體,則所得正方體相對面上兩個數(shù)的和都相等的概率是( 。
A、
1
6
B、
1
15
C、
1
60
D、
1
120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn滿足Sn=n2+bn(b為常數(shù)),且對于任意的k∈N*,ak,a2k,a4k成等比數(shù)列,數(shù)列{
1
anan+1 
}
的前n項和為Tn(n∈N*)
(1)求數(shù)列{an}的通項公式
(2)求使不等式Tn
6
25
成立的n最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組集合中,表示同一集合的有
 

①M={(2,3)},N={(3,2)};
②M={2,3},N={3,2};
③M={y|y=2x+1,x∈R},N={y|y=x+2,x∈R};
④M={y|y=x-2,x∈R},N={(x,y)|y=x-2,x∈R}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+x=2,則下列說中,正確的是(  )
A、方程兩根和是1
B、方程兩根積是2
C、方程兩根和是-1
D、方程兩根積是-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)定義在R上,對于任意實數(shù)m,n,恒有f(m+n)=f(m)•f(n),且當(dāng)x>0時,0<f(x)<1.
Ⅰ.求證:f(0)=1;
Ⅱ.當(dāng)x<0時,比較f(x)與1的大;
Ⅲ.判斷f(x)在R上的單調(diào)性,并證明你的結(jié)論;
Ⅳ.如果f(3)=
1
8
,試求f(2002)的值.

查看答案和解析>>

同步練習(xí)冊答案