【題目】太極圖被稱為“中華第一圖”,閃爍著中華文明進程的光輝,它是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉化,相對統(tǒng)一的和諧美.定義:能夠將圓O的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,設圓O,則下列說法中正確的是( )

A.函數(shù)是圓O的一個太極函數(shù)

B.O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)

C.函數(shù)是圓O的一個太極函數(shù)

D.函數(shù)的圖象關于原點對稱是為圓O的太極函數(shù)的充要條件

【答案】AC

【解析】

根據(jù)題中所給的定義對四個選項逐一判斷即可.

選項A:因為,所以函數(shù)是奇函數(shù),它的圖象關于原點對稱,如下圖所示:

所以函數(shù)是圓O的一個太極函數(shù),故本說法正確;

選項B:如下圖所示:函數(shù)是偶函數(shù),也是圓O的一個太極函數(shù),故本說法不正確;

選項C:因為是奇函數(shù),所以它的圖象關于原點對稱,而圓也關于原

點對稱,如下圖所示:因此函數(shù)是圓O的一個太極函數(shù),故本說法是正確的;

選項D:根據(jù)選項B的分析,圓O的太極函數(shù)可以是偶函數(shù)不一定關于原點對稱,故本說法不正確.

故選:AC

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績實行“”的構成模式,第一個“3”是語文、數(shù)學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體,從學生群體中隨機抽取了50名學生進行調查,他們選考物理,化學,生物的科目數(shù)及人數(shù)統(tǒng)計如下表:

(I)從所調查的50名學生中任選2名,求他們選考物理、化學、生物科目數(shù)量不相等的概率;

(II)從所調查的50名學生中任選2名,記表示這2名學生選考物理、化學、生物的科目數(shù)量之差的絕對值,求隨機變量的分布列和數(shù)學期望;

(III)將頻率視為概率,現(xiàn)從學生群體中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數(shù)記作,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是自然對數(shù)的底數(shù),.

1)求的最值;

2)討論方程的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

平面直角坐標系中,射線,曲線的參數(shù)方程為為參數(shù)),曲線的方程為;以原點為極點,軸的非負半軸為極軸建立極坐標系.曲線的極坐標方程為.

(Ⅰ)寫出射線的極坐標方程以及曲線的普通方程;

(Ⅱ)已知射線交于,,與交于,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為坐標原點,直線經過拋物線的焦點.

1)若點到直線的距離為, 求直線的方程;

2)設點是直線與拋物線在第一象限的交點.是以點為圓心,為半徑的圓與軸負半軸的交點.試判斷直線與拋物線的位置關系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南北朝時期的偉大數(shù)學家祖暅在數(shù)學上有突出貢獻,他在實踐的基礎上提出祖暅原理:“冪勢既同,則積不容異”.其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,被平行于這兩個平面的任意平面截得的兩個截面面積分別為、,則命題:“、相等”是命題總相等”的(

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有10名教師,其中男教師6名,女教師4名.

1)現(xiàn)要從中選2名去參加會議,有多少種不同的選法?

2)選出2名男教師或2名女教師去外地學習的選法有多少種?

3)現(xiàn)要從中選出男、女老師各2名去參加會議,有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

1)討論函數(shù)的單調性;

2)當時,若恒成立,求實數(shù)b的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的左右焦點分別為實軸長為6,漸近線方程為動點在雙曲線左支上,為圓上一點,的最小值為

A. 8 B. 9 C. 10 D. 11

查看答案和解析>>

同步練習冊答案