【題目】已知直線過(guò)坐標(biāo)原點(diǎn)O且與圓相交于點(diǎn)A,B,圓M過(guò)點(diǎn)A,B且與直線相切.
(1)求圓心M的軌跡C的方程;
(2)若圓心在x軸正半軸上面積等于的圓W與曲線C有且僅有1個(gè)公共點(diǎn).
(。┣蟪鰣AW標(biāo)準(zhǔn)方程;
(ⅱ)已知斜率等于的直線,交曲線C于E,F兩點(diǎn),交圓W于P,Q兩點(diǎn),求的最小值及此時(shí)直線的方程.
【答案】(1);(2)(。;(ⅱ)的最小值為,此時(shí)直線的方程為.
【解析】
(1)設(shè),由題意結(jié)合圓的性質(zhì)可得、,代入化簡(jiǎn)即可得解;
(2)(。┰O(shè)圓W與曲線C的公共點(diǎn)為,圓W的標(biāo)準(zhǔn)方程,由題意可得曲線C在T的切線l與圓W相切即,由直線垂直的性質(zhì)及點(diǎn)在圓W上即可得解;
(ⅱ)設(shè),,直線,聯(lián)立方程組結(jié)合弦長(zhǎng)公式可得,由垂徑定理可得,確定m的取值范圍后,通過(guò)換元、基本不等式即可得解.
(1)由題意圓的圓心為,半徑為2,直線過(guò)坐標(biāo)原點(diǎn)O,
所以坐標(biāo)原點(diǎn)O為AB的中點(diǎn),,
所以,
設(shè),所以,
又因?yàn)閳AM與直線相切,所以圓M的半徑,
所以,化簡(jiǎn)得M的軌跡C的方程為;
(2)(。┯桑1)知曲線C為,設(shè),則,
設(shè)圓W與曲線C的公共點(diǎn)為,
則曲線C在T的切線l的斜率,
由題意,直線l與圓W相切于T點(diǎn),
設(shè)圓W的標(biāo)準(zhǔn)方程為,則圓W的的圓心為,
則直線WT的斜率,
因?yàn)?/span>,所以,即 ,
又因?yàn)?/span>,所以,所以
令,則,所以
即,所以,
所以
從而圓W的標(biāo)準(zhǔn)方程為;
(ⅱ)設(shè),,直線,
由得,所以,,
所以,
又因?yàn)閳AW的圓心到直線的距離為,
所以,
所以,
由于與曲線C、圓W均有兩個(gè)不同的交點(diǎn),,解得,
令,則,
則
,
當(dāng)且僅當(dāng),即,亦時(shí)取等號(hào),
當(dāng)時(shí),的最小值為,
此時(shí)直線的方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盲盒里面通常裝的是動(dòng)漫、影視作品的周邊,或者設(shè)計(jì)師單獨(dú)設(shè)計(jì)出來(lái)的玩偶.由于盒子上沒(méi)有標(biāo)注,購(gòu)買者只有打開才會(huì)知道自己買到了什么,因此這種驚喜吸引了眾多年輕人,形成了“盲盒經(jīng)濟(jì)”.某款盲盒內(nèi)可能裝有某一套玩偶的、、三種樣式,且每個(gè)盲盒只裝一個(gè).
(1)若每個(gè)盲盒裝有、、三種樣式玩偶的概率相同.某同學(xué)已經(jīng)有了樣式的玩偶,若他再購(gòu)買兩個(gè)這款盲盒,恰好能收集齊這三種樣式的概率是多少?
(2)某銷售網(wǎng)點(diǎn)為調(diào)查該款盲盒的受歡迎程度,隨機(jī)發(fā)放了200份問(wèn)卷,并全部收回.經(jīng)統(tǒng)計(jì),有的人購(gòu)買了該款盲盒,在這些購(gòu)買者當(dāng)中,女生占;而在未購(gòu)買者當(dāng)中,男生女生各占.請(qǐng)根據(jù)以上信息填寫下表,并分析是否有的把握認(rèn)為購(gòu)買該款盲盒與性別有關(guān)?
女生 | 男生 | 總計(jì) | |
購(gòu)買 | |||
未購(gòu)買 | |||
總計(jì) |
參考公式:,其中.
span>參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)該銷售網(wǎng)點(diǎn)已經(jīng)售賣該款盲盒6周,并記錄了銷售情況,如下表:
周數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
盒數(shù) | 16 | ______ | 23 | 25 | 26 |
由于電腦故障,第二周數(shù)據(jù)現(xiàn)已丟失,該銷售網(wǎng)點(diǎn)負(fù)責(zé)人決定用第4、5、6周的數(shù)據(jù)求線性回歸方程,再用第1、3周數(shù)據(jù)進(jìn)行檢驗(yàn).
①請(qǐng)用4、5、6周的數(shù)據(jù)求出關(guān)于的線性回歸方程;
(注:,)
②若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2盒,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)①中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載:“芻(chú)甍(méng)者,下有袤有廣,而上有袤無(wú)廣.芻,草也.甍,屋蓋也.”翻譯為“底面有長(zhǎng)有寬為矩形,頂部只有長(zhǎng)沒(méi)有寬為一條棱.芻甍字面意思為茅草屋頂.”若芻甍的三視圖如圖所示,主視圖是上底為2,下底為4,高為1的等腰梯形,左視圖是底邊為2的等腰三角形,則該幾何體的體積為( ).
A.B.C.2D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若存在滿足,證明成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,,,,,,點(diǎn)是線段的中點(diǎn),將,分別沿,
向上折起,使,重合于點(diǎn),得到三棱錐.試在三棱錐中,
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱中,,,為的中點(diǎn).
(I)若為上的一點(diǎn),且與直線垂直,求的值;
(Ⅱ)在(I)的條件下,設(shè)異面直線與所成的角為45°,求直線與平面成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是首項(xiàng)為1的等差數(shù)列,數(shù)列是公比不為1的等比數(shù)列,且滿足,,
(1)求數(shù)列,的通項(xiàng)公式;
(2)令,記數(shù)列的前n項(xiàng)和為,求證:對(duì)任意的,都有;
(3)若數(shù)列滿足,,記,是否存在整數(shù),使得對(duì)任意的 都有成立?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,傾斜角為的直線經(jīng)過(guò)坐標(biāo)原點(diǎn),曲線的參數(shù)方程為(為參數(shù)).以點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求與的極坐標(biāo)方程;
(2)設(shè)與的交點(diǎn)為、,與的交點(diǎn)為、,且,求值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿足,且是的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,對(duì)任意正數(shù)數(shù), 恒成立,試求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com