Processing math: 47%
11.下列各組中的兩個(gè)向量共線(xiàn)的是( �。�
A.a=(-1,3),\overrightarrow=(2,6)B.a=(1,-2),=(4,8)C.a=(1,3),=(3,1)D.a=(-3,2),=(6,-4)

分析 利用向量共線(xiàn)定理即可判斷出結(jié)論.

解答 解:若兩向量滿(mǎn)足\overrightarrow{a}=λ\overrightarrow,則兩向量共線(xiàn),
D中\overrightarrow=-\overrightarrow{a},∴兩向量共線(xiàn).
故選:D.

點(diǎn)評(píng) 本題考查了向量共線(xiàn)定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=aex(x+1)(其中e=2.71828…),g(x)=x2+bx+2,且f(x)與g(x)在x=0處有相同的切線(xiàn).
(1)求函數(shù)f(x)的解析式,并討論f(x)在[t,t+1](t∈R)上的最小值;
(2)若對(duì)任意的x≥-2,kf(x)≥g(x)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知全集U=R,集合A={x|y=lg(x2-4x)},B={x|x<2},則(∁UA)∩B=( �。�
A.{x|x≥0}B.{x|0≤x<2}C.{x|2<x≤4}D.{x|0≤x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若拋物線(xiàn)C的頂點(diǎn)在坐標(biāo)原點(diǎn)O,其圖象關(guān)于x軸對(duì)稱(chēng),且經(jīng)過(guò)點(diǎn)M(2,2).
(1)求拋物線(xiàn)C的方程;
(2)過(guò)點(diǎn)M作拋物線(xiàn)C的兩條弦MA,MB,設(shè)MA,MB所在直線(xiàn)的斜率分別為k1,k2,當(dāng)k1,k2變化且滿(mǎn)足k1+k2=-1時(shí),證明直線(xiàn)AB恒過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.三條不同直線(xiàn)的a,b,c,其中正確的命題個(gè)數(shù)是( �。�
(1)若a∥b,b∥c,則a∥c;
(2)若a⊥b,c⊥b,a∥c;
(3)若a∥c,c⊥b,則b⊥a;
(4)若a與b,a與c都是異面直線(xiàn),則b與c也是異面直線(xiàn).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,角A,B,C所對(duì)的邊為a,b,c.已知a=2c,且A-C=\frac{π}{2}
(1)求sinC的值;
(2)當(dāng)b=1時(shí),求△ABC外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.曲線(xiàn)y=xlnx上點(diǎn)P處的切線(xiàn)平行于直線(xiàn)2x-y+1=0,則點(diǎn)P的坐標(biāo)是(  )
A.(1,e)B.(e,e)C.(e,1)D.(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知直角的三邊長(zhǎng)a,b,c,滿(mǎn)足a≤b<c
(1)在a,b之間插入2016個(gè)數(shù),使這2018個(gè)數(shù)構(gòu)成以a為首項(xiàng)的等差數(shù)列{an},且它們的和為2018,求斜邊的最小值;
(2)已知a,b,c均為正整數(shù),且a,b,c成等差數(shù)列,將滿(mǎn)足條件的三角形的面積從小到大排成一列S1,S2,S3,…,Sn,且{T_n}=-{S_1}+{S_2}-{S_3}+…+{(-1)^n}{S_n},求滿(mǎn)足不等式{T_{2n}}>6•{2^{n+1}}的所有n的值;
(3)已知a,b,c成等比數(shù)列,若數(shù)列{Xn}滿(mǎn)足\sqrt{5}{X_n}={({\frac{c}{a}})^n}-{({-\frac{a}{c}})^n}\;(n∈{N^*}),證明:數(shù)列\left\{{\sqrt{X_n}}\right\}中的任意連續(xù)三項(xiàng)為邊長(zhǎng)均可以構(gòu)成直角三角形,且Xn是正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=x2-ax-\frac{a}{4}+\frac{1}{2},x∈[0,1],求f(x)的最小值g(a).

查看答案和解析>>

同步練習(xí)冊(cè)答案