【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , S3=15,a3和a5的等差中項(xiàng)為9
(1)求an及Sn
(2)令bn= (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】
(1)解:∵數(shù)列{an}為等差數(shù)列,所以設(shè)其首項(xiàng)為a1,公差為d,

∵S3=3a3,a3+a5=18,

,解得a1=3,d=2,

∴an=a1+(n﹣1)d=2n+1,

an=2n+1,

=n2+2n


(2)解:由(1)知an=2n+1,

∴bn= = =( ),(n∈N*),

數(shù)列{bn}的前n項(xiàng)和Tn,Tn=b1+b2+b3+…+bn

=(1﹣ )+( )+( )+…+( ),

=1﹣

=


【解析】(1)根據(jù)S3=15,a3和a5的等差中項(xiàng)為9,列方程組解得:a1=3,d=2,寫(xiě)出通項(xiàng)公式an和前n項(xiàng)和Sn公式;(2)由bn= =( ),采用裂項(xiàng)法求數(shù)列的前n項(xiàng)和Tn
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:,以及對(duì)數(shù)列的前n項(xiàng)和的理解,了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x2≥1}, ,則A∩(RB)=(
A.(2,+∞)
B.(﹣∞,﹣1]∪(2,+∞)
C.(﹣∞,﹣1)∪(2,+∞)
D.[﹣1,0]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某機(jī)構(gòu)為調(diào)查2017年下半年落實(shí)中學(xué)生“陽(yáng)光體育”活動(dòng)的情況,設(shè)平均每人每天參加體育鍛煉時(shí)間為(單位:分鐘),按鍛煉時(shí)間分下列四種情況統(tǒng)計(jì):①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項(xiàng)活動(dòng),圖1是此次調(diào)查中某一項(xiàng)的流程圖,其輸出的結(jié)果是6400,則平均每天參加體育鍛煉時(shí)間在0~20分鐘內(nèi)的學(xué)生的頻率是( )

1

A. 0.64 B. 0.36 C. 6400 D. 3600

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是公比為的等比數(shù)列,且的等比中項(xiàng),其前項(xiàng)和為;數(shù)列是等差數(shù)列, ,其前項(xiàng)和滿(mǎn)足 (為常數(shù),且)

1)求數(shù)列的通項(xiàng)公式及的值;

2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn):,點(diǎn)的極坐標(biāo)為,直線(xiàn)的極坐標(biāo)方程為,且點(diǎn)在直線(xiàn)上.

(1)求曲線(xiàn)的極坐標(biāo)方程和直線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)向左平移個(gè)單位長(zhǎng)度后得到,的交點(diǎn)為, ,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知經(jīng)過(guò)原點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),點(diǎn)為橢圓上不同于的一點(diǎn),直線(xiàn)的斜率均存在,且直線(xiàn)的斜率之積為.

(1)求橢圓的離心率;

(2)若,設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線(xiàn)經(jīng)過(guò)橢圓的右焦點(diǎn),且與橢圓交于兩點(diǎn),若點(diǎn)在以為直徑的圓內(nèi)部,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn是數(shù)列{an}的前n項(xiàng)和,且4Sn=an2+2an﹣3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=2n , 求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求經(jīng)過(guò)三點(diǎn)A(1,4),B(﹣2,3),C(4,﹣5)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓),若橢圓上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到直線(xiàn)的距離等于短半軸的長(zhǎng),已知,過(guò)的直線(xiàn)與橢圓交于兩點(diǎn).

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案