【題目】已知集合A={x|x2≥1}, ,則A∩(RB)=( )
A.(2,+∞)
B.(﹣∞,﹣1]∪(2,+∞)
C.(﹣∞,﹣1)∪(2,+∞)
D.[﹣1,0]∪[2,+∞)
【答案】C
【解析】解:A={x|x2≥1}={x|x≤﹣1或x≥1}, 由 ,得0<x≤2,
∴ ={x|0<x≤2},
∴RB={x|x≤0或x>2},
∴A∩(RB)=(﹣∞,﹣1)∪(2,+∞).
故選:C.
【考點精析】解答此題的關(guān)鍵在于理解交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識,掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2bx+5(b∈R).
(1)若b=2,試解不等式f(x)<10;
(2)若f(x)在區(qū)間[﹣4,﹣2]上的最小值為﹣11,試求b的值;
(3)若|f(x)﹣5|≤1在區(qū)間(0,1)上恒成立,試求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家擬在2017年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)(單位:萬件)與年促銷費(fèi)用(單位:萬元)()滿足( 為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是1萬件.已知2017年生產(chǎn)該產(chǎn)品的固定投入為8萬元.每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).
(1)將2017年該產(chǎn)品的利潤(單位:萬元)表示為年促銷費(fèi)用(單位:萬元)的函數(shù);
(2)該廠家2017年的促銷費(fèi)用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)貨卡車以每小時千米的速度勻速行駛千米().假設(shè)汽油的價格是每升元,而汽車每小時耗油升,司機(jī)的工資是每小時元.
(1)求這次行車總費(fèi)用關(guān)于的表達(dá)式;
(2)當(dāng)為何值時,這次行車的總費(fèi)用最低?并求出最低費(fèi)用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若,求在點處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)若存在兩個極值點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合.如果對于的每一個含有個元素的子集, 中必有4個元素的和等于,稱正整數(shù)為集合的一個“相關(guān)數(shù)”.
(Ⅰ)當(dāng)時,判斷5和6是否為集合的“相關(guān)數(shù)”,說明理由;
(Ⅱ)若為集合的“相關(guān)數(shù)”,證明: ;
(Ⅲ)給定正整數(shù).求集合的“相關(guān)數(shù)” 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓,點在圓上,點在圓上.
(1)求的最小值;
(2)直線上是否存在點,滿足經(jīng)過點由無數(shù)對相互垂直的直線和,它們分別與圓和圓相交,并且直線被圓所截得的弦長等于直線被圓所截得的弦長?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個內(nèi)角A、B、C的對邊分別是a,b,c,給出下列命題: ①若sinBcosC>﹣cosBsinC,則△ABC一定是鈍角三角形;
②若sin2A+sin2B=sin2C,則△ABC一定是直角三角形;
③若bcosA=acosB,則△ABC為等腰三角形;
④在△ABC中,若A>B,則sinA>sinB;
其中正確命題的序號是 . (注:把你認(rèn)為正確的命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , S3=15,a3和a5的等差中項為9
(1)求an及Sn
(2)令bn= (n∈N*),求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com