(本小題12分)
已知函數(shù)
(Ⅰ)分別求出、、、的值;
(Ⅱ)根據(jù)(Ⅰ)中所求得的結(jié)果,請(qǐng)寫(xiě)出之間的等式關(guān)系,并證明這個(gè)等式關(guān)系;
(Ⅲ)根據(jù)(Ⅱ)中總結(jié)的等式關(guān)系,
請(qǐng)計(jì)算表達(dá)式
的值.

(Ⅰ);;;
(Ⅱ),證明:見(jiàn)解析;(Ⅲ)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
(1)證明:函數(shù)上是減函數(shù),在[,+∞)上是增函數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分)(1)二次函數(shù)滿足:為偶函數(shù)且,求的解析式;
(2)若函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b0/6/wbrq62.png" style="vertical-align:middle;" />,求取值范圍。
(3)若函數(shù)值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/21/d/1jmna3.png" style="vertical-align:middle;" />,求取值范圍。
(4)若函數(shù)上單調(diào)遞減,求取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b0/6/wbrq62.png" style="vertical-align:middle;" />的單調(diào)函數(shù)圖關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),.
(1)求的解析式;
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)已知函數(shù)
(Ⅰ)判斷并證明函數(shù)的奇偶性;
(Ⅱ)判斷函數(shù)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在 上是增函數(shù).
(1)如果函數(shù)上是減函數(shù),在上是增函數(shù),求的值;
(2)證明:函數(shù)(常數(shù))在上是減函數(shù);
(3)設(shè)常數(shù),求函數(shù)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)已知,
(1)求函數(shù)f(x)的表達(dá)式?
(2)求函數(shù)f(x)的定義域?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)已知是定義在上的奇函數(shù),當(dāng)時(shí),
(1)求的解析式;
(2)是否存在負(fù)實(shí)數(shù),使得當(dāng)的最小值是4?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.
(3)對(duì)如果函數(shù)的圖像在函數(shù)的圖像的下方,則稱函數(shù)在D上被函數(shù)覆蓋.求證:若時(shí),函數(shù)在區(qū)間上被函數(shù)覆蓋.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知偶函數(shù)滿足:當(dāng)時(shí),,
當(dāng)時(shí),
(1) 求當(dāng)時(shí),的表達(dá)式;
(2) 試討論:當(dāng)實(shí)數(shù)滿足什么條件時(shí),函數(shù)有4個(gè)零點(diǎn),
且這4個(gè)零點(diǎn)從小到大依次構(gòu)成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案