【題目】如圖,在四棱錐中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求證:AD⊥PB;
(2)已知點(diǎn)M是線段PC上,MC=λPM,且PA∥平面MQB,求實(shí)數(shù)λ的值.
【答案】(1)見解析;(2)2.
【解析】
(1)連結(jié)BD,則△ABD為正三角形,從而AD⊥BQ,AD⊥PQ,進(jìn)而AD⊥平面PQB,由此能證明AD⊥PB;
(2)連結(jié)AC,交BQ于N,連結(jié)MN,由AQ∥BC,得,根據(jù)線面平行的性質(zhì)定理得MN∥PA,由此能求出實(shí)數(shù)λ的值.
證明:(1)如圖,連結(jié)BD,由題意知四邊形ABCD為菱形,∠BAD=60°,
∴△ABD為正三角形,
又∵AQ=QD,∴Q為AD的中點(diǎn),∴AD⊥BQ,
∵△PAD是正三角形,Q為AD中點(diǎn),
∴AD⊥PQ,又BQ∩PQ=Q,∴AD⊥平面PQB,
又∵PB平面PQB,∴AD⊥PB.
解:(2)連結(jié)AC,交BQ于N,連結(jié)MN,
∵AQ∥BC,∴,
∵PN∥平面MQB,PA平面PAC,
平面MQB∩平面PAC=MN,
∴根據(jù)線面平行的性質(zhì)定理得MN∥PA,
∴,
綜上,得,∴MC=2PM,∵M(jìn)C=λPM,∴實(shí)數(shù)λ的值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),點(diǎn)為平面上動(dòng)點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為,且.
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)過(guò)點(diǎn)的直線與軌跡交于兩點(diǎn),在處分別作軌跡的切線交于點(diǎn),設(shè)直線的斜率分別為,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣1:幾何證明選講
如圖,已知PA是⊙O的切線,A是切點(diǎn),直線PO交⊙O于B、C兩點(diǎn),D是OC的中點(diǎn),連接AD并延長(zhǎng)交⊙O于點(diǎn)E,若PA=2 ,∠APB=30°.
(1)求∠AEC的大小;
(2)求AE的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足, ,其中.
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對(duì)于恒成立,若存在,求出的最小值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,且AC=BD,平面PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)在△PAD中,AP=2,AD=2 ,PD=4,三棱錐E﹣ACD的體積是 ,求二面角D﹣AE﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線
C:(y-2)2-x2=1交于A、B兩點(diǎn).
(1)求|AB|的長(zhǎng);
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若橢圓和橢圓的焦點(diǎn)相同且.給出如下四個(gè)結(jié)論:
①橢圓與橢圓一定沒(méi)有公共點(diǎn) ②
③ ④
其中所有正確結(jié)論的序號(hào)是( )
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直四棱柱ABCD—A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A為直角,AB∥CD,AB=4,AD=2,DC=2.
(Ⅰ)求線段BC1的長(zhǎng)度;
(Ⅱ)異面直線BC1與DC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos(2x-),x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-,]上的最小值和最大值,并求出取得最值時(shí)x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com