【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),它與曲線
C:(y-2)2-x2=1交于A、B兩點(diǎn).
(1)求|AB|的長;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離.
【答案】(1);(2)
【解析】試題分析:
(1)直線的參數(shù)方程是標(biāo)準(zhǔn)參數(shù)方程,因此可把直線參數(shù)方程代入曲線的方程,由利用韋達(dá)定理可得;(2)把點(diǎn)極坐標(biāo)化為直角坐標(biāo),知為直線參數(shù)方程的定點(diǎn),因此利用參數(shù)的幾何意義可得.
試題解析:
(1)把直線的參數(shù)方程對應(yīng)的坐標(biāo)代入曲線方程并化簡得7t2+60t﹣125=0
設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2,則.
∴.
(2)由P的極坐標(biāo)為,可得,.
∴點(diǎn)P在平面直角坐標(biāo)系下的坐標(biāo)為(﹣2,2),
根據(jù)中點(diǎn)坐標(biāo)的性質(zhì)可得AB中點(diǎn)M對應(yīng)的參數(shù)為.
∴由t的幾何意義可得點(diǎn)P到M的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=.
(1)若f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)在(﹣∞,1)上為增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某居民區(qū)的物業(yè)部門每月向居民收取衛(wèi)生費(fèi),計(jì)費(fèi)方法如下:3人和3人以下的住戶,每戶收取5元;超過3人的住戶,每超出1人加收1.2元.設(shè)計(jì)一個(gè)算法,根據(jù)輸入的人數(shù),計(jì)算應(yīng)收取的衛(wèi)生費(fèi),并畫出程序框圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在120°的二面角α--β的兩個(gè)面內(nèi)分別有點(diǎn)A,B,A∈α,B∈β,A,B到棱l的距離AC,BD分別是2,4,且線段AB=10.
(1)求C,D間的距離;
(2)求直線AB與平面β所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中P﹣ABCD,AB=BC=CD=DA,∠BAD=60°,AQ=QD,△PAD是正三角形.
(1)求證:AD⊥PB;
(2)已知點(diǎn)M是線段PC上,MC=λPM,且PA∥平面MQB,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程)已知曲線C的參數(shù)方程是 (φ為參數(shù),a>0),直線l的參數(shù)方程是 (t為參數(shù)),曲線C與直線l有一個(gè)公共點(diǎn)在x軸上,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系.
(1)求曲線C普通方程;
(2)若點(diǎn) 在曲線C上,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,點(diǎn)E,F分別在A1B1,D1C1上,A1E=D1F=4,過點(diǎn)E,F的平面α與此長方體的面相交,交線圍成一個(gè)正方形.
(1)在圖中畫出這個(gè)正方形(不必說明畫法和理由);
(2)求直線AF與平面α所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P為橢圓C: =1(a>b>0)的下頂點(diǎn),M,N在橢圓上,若四邊形OPMN為平行四邊形,α為直線ON的傾斜角,若α∈( , ],則橢圓C的離心率的取值范圍為( )
A.(0, ]
B.(0, ]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在三棱錐P﹣ABC中,PA⊥面ABC,AC⊥BC,且PA=AC=BC=1,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(Ⅰ)求證:PB⊥平面AEF;
(Ⅱ)求二面角A﹣PB﹣C的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com