甲船在早6點至12點之間的任意時刻出發(fā),則它早于8點出發(fā)的概率為( 。
A、
1
3
B、
1
2
C、
2
3
D、
2
7
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:確定件總數(shù)包含的時間長度是6,它早于8點出發(fā)的事件包含的時間長度是2,由幾何概型公式得到結(jié)論.
解答: 解:由題意知這是一個幾何概型,
∵甲船在早6點至12點之間的任意時刻出發(fā),
∴事件總數(shù)包含的時間長度是6,
∵它早于8點出發(fā)的事件包含的時間長度是2,
由幾何概型公式得到P=
2
6
=
1
3
,
故選:A.
點評:高中必修中學(xué)習(xí)了幾何概型和古典概型兩種概率問題,解題時,先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù).再看是不是幾何概型,它的結(jié)果要通過長度、面積或體積之比來得到.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

變量y對x的回歸方程的意義是( 。
A、表示y與x之間的函數(shù)關(guān)系
B、表示y與x之間的線性關(guān)系
C、反映y與x之間的真實關(guān)系
D、反映y與x之間的真實關(guān)系達到最大限度的吻合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,AB=AA1=2,M、N分別是BB1和B1C1的中點,則直線
AM與CN所成角的余弦值等于( 。
A、
5
2
B、
2
5
2
C、
2
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列8,5,2,…的第20項是( 。
A、68B、65
C、-46D、-49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上奇函數(shù)f(x)滿足f(x)=f(x+5),且f(1)=1,f(2)=2,則f(3)-f(4)=(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲,乙,丙,丁四位同學(xué)各自對A,B兩變量的線性相關(guān)試驗,并用回歸分析方法分別求得相關(guān)系數(shù)r如表:
r 0.82 0.78 0.69 0.85
則這四位同學(xué)的試驗結(jié)果能體現(xiàn)出A,B兩變量有更強的線性相關(guān)性的是( 。
A、甲B、乙C、丙D、丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)(
2
2
+
2
2
i)2=( 。
A、-iB、iC、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的方程x2-mx-1=0有兩個實根α、β,且α<β.定義函數(shù)f(x)=
2x-m
x2+1

(Ⅰ)求αf(α)+βf(β)的值;
(Ⅱ)判斷f(x)在區(qū)間(α,β)上的單調(diào)性,并加以證明;
(Ⅲ)對?x1,x2∈(α,β),證明不等式:|f(x1)-f(x2)|<|α-β|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上有兩點A、B,直線l:y=x+k上有兩點C、D,四邊形ABCD是正方形,此正方形外接圓的方程為x2+y2-2y-8=0,求橢圓C及直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案