【題目】已知函數(shù),其中 ,為自然對數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調性;
(Ⅱ)當時,若函數(shù)的圖象恒在直線的上方,求實數(shù)a的取值范圍.
【答案】(Ⅰ)見詳解;(Ⅱ)
【解析】
(Ⅰ)由求導可得:,因為由可得,再根據(jù)兩者的大小關系進行分類討論可得函數(shù)的單調區(qū)間;
(Ⅱ)由已知可得在上恒成立,再分類討論時,時和時函數(shù)的最小值,由即可求解.
(Ⅰ)由求導可得:
.
由可得,且,
①當時,即,
當或時,在此區(qū)間單調遞增;
當時,在此區(qū)間單調遞減;
②當時,即,
當或時,在此區(qū)間單調遞增;
當時,在此區(qū)間單調遞減;
③當時,即,
,在R上單調遞增;
(Ⅱ)由已知可得在上恒成立.
①當時,由(Ⅰ)可知在上單調遞增,
,
,解得:,
;
②當時,即
由(Ⅰ)可知在上單調遞增,在上單調遞減,
,
解得,;
③當時,即,
由(Ⅰ)可知在上單調遞減,
,
,解得,此種情況a無解.
綜上,a的取值范圍是
科目:高中數(shù)學 來源: 題型:
【題目】如圖,,是經過小城的東西方向與南北方向的兩條公路,小城位于小城的東北方向,直線距離.現(xiàn)規(guī)劃經過小城修建公路(,分別在與上),與,圍成三角形區(qū)域.
(1)設,,求三角形區(qū)域周長的函數(shù)解析式;
(2)現(xiàn)計劃開發(fā)周長最短的三角形區(qū)域,求該開發(fā)區(qū)域的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最小值1,最大值9.
(1)求實數(shù)a,b的值;
(2)設,若不等式在區(qū)間上恒成立,求實數(shù)k的取值范圍;
(3)設),若函數(shù)有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校共有學生15 000人,其中男生10 500人,女生4500人.為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)應收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計該校學生每周平均體育運動時間超過4小時的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均體育運動時間與性別有關”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
(1)若是的兩個不同的根,是否存在實數(shù),使成立?若存在,求的值;若不存在,請說明理由.
(2)設,函數(shù)已知方程恰有3個不同的根.
(ⅰ)求的取值范圍;
(ⅱ)設分別是這3個根中的最小值與最大值,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設g(x)=log4,若函數(shù)f(x)與g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,邊長為4的正方形與矩形所在平面互相垂直,分別為的中點,.
(1)求證:平面;
(2)求證:平面;
(3)在線段上是否存在一點,使得?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com