已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,在△ABC中,b=
2
a,且sinB+cosB=0,則角A的大小為
 
考點(diǎn):正弦定理的應(yīng)用
專題:解三角形
分析:首先,根據(jù)sinB+cosB=0,得到B=
4
,然后,結(jié)合正弦定理,得到sinA=
asinB
b
=
1
2
,從而,確定角A的大。
解答: 解:∵sinB+cosB=0,
∴tanB=-1,
∵B∈(0,π),
∴B=
4
,
a
sinA
=
b
sinB

∴sinA=
asinB
b
=
1
2
,
∵A∈(0,π),
∴A=
π
6

故答案為:
π
6
點(diǎn)評(píng):本題屬于中檔題,掌握特殊角的三角函數(shù)值是解題的關(guān)鍵,熟練應(yīng)用正弦定理進(jìn)行求解角度問(wèn)題,是考試的熱點(diǎn)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinωx•cosωx-cos2ωx(ω>0)最小正周期為
π
2

(Ⅰ)求ω的值及函數(shù)f(x)的解析式;
(Ⅱ)若△ABC的三條邊a,b,c滿足a2=bc,a邊所對(duì)的角為A,求A的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P為圓O的弦AB上的任意點(diǎn),連結(jié)PO,使∠OPC=90°,PC交圓于C,若AP=4,PC=3,則PB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某算法的流程圖如圖所示,則程序運(yùn)行結(jié)束時(shí)輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于正項(xiàng)數(shù)列{an},定義Hn=
n
a1+2a2+3a3+…+nan
為{an}的“給力”值,現(xiàn)知數(shù)列{an}的“給力”值為Hn=
1
n
,則數(shù)列{an}的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={(x,y)丨y=f(x)},若對(duì)于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1y1+x2y2=0成立,則稱集合M是“垂直對(duì)點(diǎn)集”.給出下列五個(gè)集合:
①M(fèi)={(x,y)丨y=
1
x
};
②M={(x,y)丨y=(x-1)2};
③M={(x,y)丨y=sinx+1};
④M={(x,y)丨y=log3x};
⑤M={(x,y)丨y=ex-2}.
其中是“垂直對(duì)點(diǎn)集”的所有序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的算法中,輸出的S的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=1+2i,其中i是虛數(shù)單位,則(z+
1
.
z
)•
.
z
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b,滿足條件
0≤a≤2
0≤b≤2
,則事件:“2a-b>0”發(fā)生的概率為( 。
A、
1
4
B、
1
3
C、
1
2
D、
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案