【題目】如圖,在直角梯形ABCD中,,,,E為AB的中點(diǎn)沿CE折起,使點(diǎn)B到達(dá)點(diǎn)F的位置,且平面CEF與平面ADCE所成的二面角為

求證:平面平面AEF;

求直線DF與平面CEF所成角的正弦值.

【答案】(1)詳見解析;(2)

【解析】

(1)由題意可得平面,從而得到平面平面

(2)為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸、軸的正方向建立如圖所示空間直角坐標(biāo)系求出及平面的法向量,代入公式可得結(jié)果.

證明:在直角梯形中,由平面幾何的知識(shí),得四邊形為正方形,

平面平面,所以平面.

平面,所以平面平面.

解:是二面角的平面角,即 .

,所以為正三角形.

為坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸、軸的正方向建立如圖所示空間直角坐標(biāo)系

從而

設(shè)平面的一個(gè)法向量為,則

,得

設(shè)直線與平面所成角為

∴直線與平面所成角的正弦值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在MBC中,MABC邊上的高,MA3,AC4,將MBC沿MA進(jìn)行翻折,使得∠BAC90°如圖,再過點(diǎn)BBDAC,連接AD,CD,MD,∠CAD30°

1)求證:平面MCD⊥平面MAD

2)求點(diǎn)B到平面MAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,且過點(diǎn)

1)求橢圓的方程;

2)已知,是否存在使得點(diǎn)關(guān)于的對(duì)稱點(diǎn)(不同于點(diǎn))在橢圓上?若存在求出此時(shí)直線的方程,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進(jìn)入21世紀(jì),互聯(lián)網(wǎng)和通訊技術(shù)高速發(fā)展使商務(wù)進(jìn)入一個(gè)全新的階段,網(wǎng)上購(gòu)物這一方便、快捷的購(gòu)物形式已經(jīng)被越來越多的人所接受某互聯(lián)網(wǎng)公司為進(jìn)一步了解大學(xué)生的網(wǎng)上購(gòu)物的情況,對(duì)大學(xué)生的消費(fèi)金額進(jìn)行了調(diào)查研究,得到如下統(tǒng)計(jì)表:

組數(shù)

消費(fèi)金額

人數(shù)

頻率

第一組

1100

第二組

3900

第三組

3000

p

第四組

1200

第五組

不低于200

m

m,p的值;

該公司從參與調(diào)查且購(gòu)物滿150元的學(xué)生中采用分層抽樣的方法抽取作為中獎(jiǎng)用戶,再隨機(jī)抽取中獎(jiǎng)用戶的獲得一等獎(jiǎng)求第五組至少1人獲得一等獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下說法錯(cuò)誤的是( )

A.復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)的軌跡為直線.

B.上連續(xù)可導(dǎo)的函數(shù),若,則為極值點(diǎn).

C.,,則.

D.為拋物線的兩點(diǎn),為坐標(biāo)原點(diǎn),若,則直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓經(jīng)過點(diǎn),且點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.

(l)求橢圓的標(biāo)準(zhǔn)方程;

(2)若是橢圓上的兩個(gè)點(diǎn),線段的中垂線的斜率為且直線交于點(diǎn)為坐標(biāo)原點(diǎn),求證:三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某品種一批樹苗生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取了容量為的樣本,測(cè)量樹苗高度(單位:),經(jīng)統(tǒng)計(jì),其高度均在區(qū)間內(nèi),將其按,,分成組,制成如圖所示的頻率分布直方圖.其中高度為27cm及以上的樹苗為優(yōu)質(zhì)樹苗.

(1)求圖中的值;

(2)已知所抽取這棵樹苗來自于兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)樹苗與兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說明理由;

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如下圖,從A點(diǎn)出發(fā)每次只能向上或者向右走一步,則到達(dá)B點(diǎn)的路徑的條數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了了解民眾對(duì)開展創(chuàng)建文明城市工作以來的滿意度,隨機(jī)調(diào)查了40名群眾,并將他們隨機(jī)分成兩組,每組20人,組群眾給第一階段的創(chuàng)文工作評(píng)分,組群眾給第二階段的創(chuàng)文工作評(píng)分,根據(jù)兩組群眾的評(píng)分繪制了如圖所示的莖葉圖.

(Ⅰ)根據(jù)莖葉圖比較群眾對(duì)兩個(gè)階段的創(chuàng)文工作滿意度評(píng)分的平均值和集中程度(不要求計(jì)算出具體值,給出結(jié)論即可);

(Ⅱ)完成下面的列聯(lián)表,并通過計(jì)算判斷是否有的把握認(rèn)為民眾對(duì)兩個(gè)階段創(chuàng)文工作的滿意度存在差異?

低于70分

不低于70分

合計(jì)

第一階段

第二階段

合計(jì)

參考公式:,.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案