【題目】如圖1,在中, , , 分別為, 的中點(diǎn).將沿折起到的位置,使,如圖2,連結(jié)

(Ⅰ)求證:平面 平面;

(Ⅱ)若中點(diǎn),求直線與平面所成角的正弦值;

(Ⅲ)線段上是否存在一點(diǎn),使二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.

【答案】見解析

【解析】試題分析:(Ⅰ)因?yàn)?/span>, 分別為, 中點(diǎn),所以// 因?yàn)?/span>,所以.所以因?yàn)?/span>,所以又因?yàn)?/span> = ,所以 平面,由此可以證明平面 平面

(Ⅱ)因?yàn)?/span>, , ,所以, 兩兩互相垂直.以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系得出平面的一個(gè)法向量,

設(shè)直線與平面所成角為,則,即得解.

假設(shè)線段上存在一點(diǎn),使二面角的余弦值為.設(shè), ,得出, .易得平面的一個(gè)法向量為,求出平面的一個(gè)法向量,則有,即,解得的值,即得解.

試題解析:

(Ⅰ)證因?yàn)?/span>, 分別為 中點(diǎn),所以//

因?yàn)?/span>,所以.所以

因?yàn)?/span>,所以

又因?yàn)?/span> = ,所以 平面

又因?yàn)?/span>平面,所以平面 平面

(Ⅱ)解: 因?yàn)?/span>, ,所以 , 兩兩互相垂直.

為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,

依題意有 , , , ,

, , , , ,

設(shè)平面的一個(gè)法向量,

則有, .所以

設(shè)直線與平面所成角為,則

故直線與平面所成角的正弦值為

解:假設(shè)線段上存在一點(diǎn),使二面角的余弦值為

設(shè), ,則,即

所以, .

易得平面的一個(gè)法向量為

設(shè)平面的一個(gè)法向量,

則有 ,則

若二面角的余弦值為,

則有,即img src="http://thumb.zyjl.cn/questionBank/Upload/2018/09/23/10/f3ee7bee/SYS201809231026007410293450_DA/SYS201809231026007410293450_DA.133.png" width="156" height="69" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,

解得, , .又因?yàn)?/span>,所以

故線段上存在一點(diǎn),使二面角的余弦值為,且

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,AD⊥平面PDC,ADBC,PDPB,AD=1,BC=3,CD=4,PD=2.

(1)求異面直線APBC所成角的余弦值;

(2)求證:PD⊥平面PBC;

(3)求直線AB與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐P﹣ABCD中,PD⊥底面ABCD,AD∥BC,AC⊥DB,∠CAD=60°,AD=2,PD=1.

(1)證明:AC⊥BP;
(2)求二面角C﹣AP﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高三年級(jí)期中考試的學(xué)生中隨機(jī)統(tǒng)計(jì)了40名學(xué)生的政治成績(jī),40名學(xué)生的成績(jī)?nèi)吭?/span>40分至100分之間,據(jù)此繪制了如圖所示的樣本頻率分布直方圖.

(1)求成績(jī)?cè)?/span>[80,90的學(xué)生人數(shù);

(2)從成績(jī)大于等于80分的學(xué)生中隨機(jī)選2名學(xué)生,求至少有1 名學(xué)生成績(jī)?cè)?/span>[90,100]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:

①對(duì)立事件一定是互斥事件;②若A,B為兩個(gè)隨機(jī)事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對(duì)立事件.

其中正確命題的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將號(hào)碼分別為1、2、…、9的九個(gè)小球放入一個(gè)袋中,這些小球僅號(hào)碼不同,其余完全相同,甲從袋中摸出一個(gè)球.其號(hào)碼為a,放回后,乙從此袋中再摸出一個(gè)球,其號(hào)碼為b,則使不等式a-2b+10>0成立的事件發(fā)生的概率等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列說法:

①在殘差圖中,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選用的模型比較合適;

②用相關(guān)指數(shù)R2來(lái)刻畫回歸的效果,R2值越大,說明模型的擬合效果越好;

③比較兩個(gè)模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的模型,擬合效果越好.

④在研究氣溫和熱茶銷售杯數(shù)的關(guān)系時(shí),若求得相關(guān)指數(shù)R2≈0.85,則表明氣溫解釋了15%的熱茶銷售杯數(shù)變化.

其中正確命題的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,an+1an=2an+1﹣1(n∈N*),令bn=an﹣1.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn= ,求證:c1+c2+…+cn<n+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1()的最小正周期為π,且

(1)求ωφ的值;

(2)函數(shù)f(x)的圖象縱坐標(biāo)不變的情況下向右平移個(gè)單位,得到函數(shù)g(x)的圖象,

①求函數(shù)g(x)的單調(diào)增區(qū)間;

②求函數(shù)g(x)在的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案