【題目】給定橢圓C(ab0),稱圓C1x2y2a2b2為橢圓C伴隨圓.已知橢圓C的離心率為,且經(jīng)過點(diǎn)(0,1)

1)求實(shí)數(shù)a,b的值;

2)若過點(diǎn)P(0,m)(m0)的直線l與橢圓C有且只有一個(gè)公共點(diǎn),且l被橢圓C的伴隨圓C1所截得的弦長為2,求實(shí)數(shù)m的值.

【答案】(1)a=2,b=1(2)m=3

【解析】

試題分析:(1)利用待定系數(shù)法求橢圓方程中參數(shù). 由題意,得b1,c2a2b2,解得a2,b1.(2)設(shè)直線l的方程為ykxm,即kxym0.因?yàn)橹本l與橢圓C有且只有一個(gè)公共點(diǎn),故方程組有且只有一組解.從而(8km)24(14k2)( 4m24)0.化簡,得m214k2因?yàn)橹本l被圓x2y25所截得的弦長為2,所以圓心到直線l的距離d.即①②,解得k22m29.因?yàn)?/span>m0,所以m3

試題解析:解:(1)記橢圓C的半焦距為c

由題意,得b1,c2a2b2

解得a2,b14

2)由(1)知,橢圓C的方程為y21,圓C1的方程為x2y25

顯然直線l的斜率存在.

設(shè)直線l的方程為ykxm,即kxym06

因?yàn)橹本l與橢圓C有且只有一個(gè)公共點(diǎn),

故方程組*) 有且只有一組解.

由(*)得(14k2)x28kmx4m240

從而(8km)24(14k2)( 4m24)0

化簡,得m214k2① 10

因?yàn)橹本l被圓x2y25所截得的弦長為2,

所以圓心到直線l的距離d

② 14

①②,解得k22m29

因?yàn)?/span>m0,所以m316

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品的廣告支出x(單位:萬元)與銷售收入y(單位:萬元)之間有下表所對應(yīng)的數(shù)據(jù):

廣告支出x(單位:萬元)

1

2

3

4

銷售收入y(單位:萬元)

12

28

42

56

(1)畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求出yx的回歸直線方程;

(3)若廣告費(fèi)為9萬元,則銷售收入約為多少萬元?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x2+bx+b) (b∈R)
(1)當(dāng)b=4時(shí),求f(x)的極值;
(2)若f(x)在區(qū)間(0, )上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,令.

(Ⅰ)研究函數(shù)的單調(diào)性;

(Ⅱ)若關(guān)于的不等式恒成立,求整數(shù)的最小值;

(Ⅲ),正實(shí)數(shù),滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩點(diǎn)到直線的距離都等于,則直線有( )條

A. 1條B. 2條C. 3條D. 4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BDAE,BD=2AE,AEAB,MAB的中點(diǎn).

(1)證明:CMDE;

(2)在邊AC上找一點(diǎn)N,使CD∥平面BEN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班名同學(xué)的數(shù)學(xué)小測成績的頻率分布表如圖所示,其中,且分?jǐn)?shù)在的有人.

(1)求的值;

(2)若分?jǐn)?shù)在的人數(shù)是分?jǐn)?shù)在的人數(shù)的,求從不及格的人中任意選取3人,其中分?jǐn)?shù)在50分以下的人數(shù)為,求的數(shù)學(xué)期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問72名不同性別的大學(xué)生在購買食物時(shí)是否看營養(yǎng)說明,得到如下列聯(lián)表:

總計(jì)

讀營養(yǎng)說明

16

28

44

不讀營養(yǎng)說明

20

8

28

總計(jì)

36

36

72

(1)根據(jù)以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過0.005的前提下認(rèn)為性別和是否看營養(yǎng)說明有關(guān)系呢?

(2)從被詢問的28名不讀營養(yǎng)說明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到女生人數(shù)

的分布列及數(shù)學(xué)期望.

附:

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案