【題目】已知函數(shù),,,令.
(Ⅰ)研究函數(shù)的單調(diào)性;
(Ⅱ)若關(guān)于的不等式恒成立,求整數(shù)的最小值;
(Ⅲ),正實數(shù),滿足,證明:.
【答案】(1) 的單增區(qū)間為.
(2)2.
(3)見解析.
【解析】分析:(1)先求函數(shù)的定義域,然后求導(dǎo),通過導(dǎo)數(shù)大于0得到增區(qū)間;
(2)不等式恒成立問題轉(zhuǎn)化為函數(shù)的最值問題,應(yīng)先求導(dǎo)數(shù),研究函數(shù)的單調(diào)性,然后求函數(shù)的最值;
(3)聯(lián)系函數(shù)的單調(diào)性,然后證明即可,注意對函數(shù)的構(gòu)造.
詳解:(1),,
由,得,又,所以,所以的單增區(qū)間為.
(2)方法一:令,
所以.
當(dāng)時,因為,所以.所以在上是遞增函數(shù),
又因為,
所以關(guān)于的不等式不能恒成立.當(dāng)時,
.
令,得,所以當(dāng)時,;當(dāng)時,.
因此函數(shù)在是增函數(shù),在是減函數(shù).
故函數(shù)的最大值為.令,因為,,又因為在上是減函數(shù),所以當(dāng)時,.所以整數(shù)的最小值為.
方法二:(2)由恒成立,得在上恒成立.
問題等價于在上恒成立.令,只要.因為
,令,得.設(shè),因為,所以在上單調(diào)遞減,不妨設(shè)的根為.當(dāng)時,;當(dāng)時,.所以在上是增函數(shù);在上是減函數(shù).
所以.因為,
所以.此時,.所以,即整數(shù)的最小值為.
(3)當(dāng)時,, 由,即
從而
令,則由得,可知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.所以,所以,即成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在育民中學(xué)舉行的電腦知識競賽中,將九年級兩個班參賽的學(xué)生成績(得分均為整數(shù))進(jìn)行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一、第三、第四、第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.
(1)求第二小組的頻率,并補(bǔ)全這個頻率分布直方圖;
(2)求這兩個班參賽的學(xué)生人數(shù)是多少?
(3)求這兩個班參賽學(xué)生的成績的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,函數(shù)恰有兩個不同的零點(diǎn),求實數(shù)的值;
(2)當(dāng)時,
① 若對于任意,恒有,求的取值范圍;
② 若,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓: 的離心率,且橢圓上一點(diǎn)到點(diǎn)的距離的最大值為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè), 為拋物線: 上一動點(diǎn),過點(diǎn)作拋物線的切線交橢圓于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)=ex,g(x)=x-b,b∈R.
(1)若函數(shù)f (x)的圖象與函數(shù)g(x)的圖象相切,求b的值;
(2)設(shè)T(x)=f (x)+ag(x),a∈R,求函數(shù)T(x)的單調(diào)增區(qū)間;
(3)設(shè)h(x)=|g(x)|·f (x),b<1.若存在x1,x2 [0,1],使|h(x1)-h(x2)|>1成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓C:(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為,且經(jīng)過點(diǎn)(0,1).
(1)求實數(shù)a,b的值;
(2)若過點(diǎn)P(0,m)(m>0)的直線l與橢圓C有且只有一個公共點(diǎn),且l被橢圓C的伴隨圓C1所截得的弦長為2,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交通指數(shù)是指交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個級別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶?在晚高峰時段(),從某市交通指揮中心選取了市區(qū)20個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.
(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫數(shù);
(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個路段,求依次抽取的三個級別路段的個數(shù);
(3)從(2)中抽取的6個路段中任取2個,求至少有1個路段為輕度擁堵的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校計劃在全國中學(xué)生田徑比賽期間,安排6位志愿者到4個比賽場地提供服務(wù),要求甲、乙兩個比賽場地各安排一個人,剩下兩個比賽場地各安排兩個人,其中的小李和小王不在一起,不同的安排方案共有( )
A. 168種 B. 156種 C. 172種 D. 180種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com