已知函數(shù)y=
x-3
6-x
的定義域?yàn)榧螦,B={x|2<x<9}.
(1)分別求:?R(A∩B),(?RB)∪A;
(2)已知C={x|a<x<a+3},若C⊆B,求實(shí)數(shù)a的取值范圍.
分析:(1)求解函數(shù)y=
x-3
6-x
的定義域得到集合A,然后直接利用集合的運(yùn)算求解:?R(A∩B),(?RB)∪A;
(2)由C⊆B,根據(jù)兩個(gè)集合端點(diǎn)值之間的關(guān)系列不等式組求解實(shí)數(shù)a的取值范圍.
解答:解:(1)由
x-3≥0
6-x>0
,得:3≤x<6.
所以A={x|3≤x<6},又B={x|2<x<9}.
所以A∩B={x|3≤x<6}∩{x|2<x<9}={x|3≤x<6}.
?RB={x|x≤2或x≥9}.
則?R(A∩B)={x|x<3或x≥6}.
(?RB)∪A={x|x≤2或x≥9}∪{x|3≤x<6}={x|x≤2或3≤x<6或x≥9}.
(2)C={x|a<x<a+3},B={x|2<x<9}.
由C⊆B,得:
a≥2
a+3≤9
,解得:2≤a≤6.
所以,使C⊆B的實(shí)數(shù)a的取值范圍是[2,6].
點(diǎn)評(píng):本題考查了交、并、補(bǔ)的混合運(yùn)算,考查了集合關(guān)系中的參數(shù)取值問題,對(duì)端點(diǎn)值的正確取舍是解決此類問題關(guān)鍵,是學(xué)生易出錯(cuò)的地方,此題是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
x2-x+n
x2+1
(n∈N*,y≠1)的最小值為an,最大值為bn,且cn=4(anbn-
1
2
).?dāng)?shù)列{cn}的前n項(xiàng)和為Sn
(1)請(qǐng)用判別式法求a1和b1
(2)求數(shù)列{cn}的通項(xiàng)公式cn;
(3)若{dn}為等差數(shù)列,且dn=
Sn
n+c
(c為非零常數(shù)),設(shè)f(n)=
dn
(n+36)dn+1
(n∈N*),求f(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)由下列關(guān)系式確定:xy>0,且4x2+9y2=36.
( I)求出函數(shù)y=f(x)的解析式,并在所給坐標(biāo)系中畫出y=f(x)的圖象;
( II)判斷f(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=3sin(x+
36
)+5sin(x+
17π
36
)
,其中x∈R,則該函數(shù)的值域?yàn)?
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=
x-3
6-x
的定義域?yàn)榧螦,B={x|2<x<9}.
(1)分別求:?R(A∩B),(?RB)∪A;
(2)已知C={x|a<x<a+3},若C⊆B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案