已知雙曲線(xiàn)與拋物線(xiàn)有一個(gè)公共的焦點(diǎn),且兩曲線(xiàn)的一個(gè)交點(diǎn)為,若,則雙曲線(xiàn)的漸近線(xiàn)方程為.
A.B.C.D.
B

試題分析:拋物線(xiàn)焦點(diǎn),所以雙曲線(xiàn)焦點(diǎn)為 ,拋物線(xiàn)中,所以點(diǎn)P到準(zhǔn)線(xiàn)的距離為5,,代入雙曲線(xiàn)得
 ,漸近線(xiàn)為
點(diǎn)評(píng):本題的入手點(diǎn)在拋物線(xiàn),首先由拋物線(xiàn)方程得到其性質(zhì),結(jié)合點(diǎn)P是兩曲線(xiàn)的交點(diǎn),通過(guò)點(diǎn)P將已知條件轉(zhuǎn)換到雙曲線(xiàn)中,進(jìn)而求得雙曲線(xiàn)方程
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為橢圓的左、右焦點(diǎn),是橢圓上一點(diǎn),若。
(1)求橢圓方程;
(2)若的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在拋物線(xiàn)上,橫坐標(biāo)為的點(diǎn)到焦點(diǎn)的距離為,則的值為(   )
A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓,它的離心率為,一個(gè)焦點(diǎn)和拋物線(xiàn)的焦點(diǎn)重合,過(guò)直線(xiàn)上一點(diǎn)引橢圓的兩條切線(xiàn),切點(diǎn)分別是.
(Ⅰ)求橢圓的方程;
(Ⅱ)若在橢圓上的點(diǎn)處的橢圓的切線(xiàn)方程是. 求證:直線(xiàn)恒過(guò)定點(diǎn);并出求定點(diǎn)的坐標(biāo).
(Ⅲ)是否存在實(shí)數(shù),使得恒成立?(點(diǎn)為直線(xiàn)恒過(guò)的定點(diǎn))若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(1)求橢圓方程;
(2)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線(xiàn)段所成的比為2,求線(xiàn)段AB所在直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線(xiàn)與平面平行,P是直線(xiàn)上的一點(diǎn),平面內(nèi)的動(dòng)點(diǎn)B滿(mǎn)足:PB與直線(xiàn)。那么B點(diǎn)軌跡是                           
A.雙曲線(xiàn)B.橢圓C.拋物線(xiàn)D.兩直線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓O,直線(xiàn)l與橢圓C相交于P、Q兩點(diǎn),O為原點(diǎn).
(Ⅰ)若直線(xiàn)l過(guò)橢圓C的左焦點(diǎn),且與圓O交于A、B兩點(diǎn),且,求直線(xiàn)l的方程;
(Ⅱ)如圖,若重心恰好在圓上,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)雙曲線(xiàn)的右焦點(diǎn)作圓的切線(xiàn)(切點(diǎn)為),交軸于點(diǎn).若為線(xiàn)段的中點(diǎn),則雙曲線(xiàn)的離心率為
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn)的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),滿(mǎn)足,則弦的中點(diǎn)到準(zhǔn)線(xiàn)的距離為_(kāi)___.

查看答案和解析>>

同步練習(xí)冊(cè)答案