精英家教網 > 高中數學 > 題目詳情

(本小題滿分12分)
已知橢圓的離心率為,右焦點為(,0),斜率為1的直線與橢圓G交與A、B兩點,以AB為底邊作等腰三角形,頂點為
(1)求橢圓G的方程;
(2)求的面積.

(1)(2)

解析試題分析:(1)由已知得
解得,又
所以橢圓G的方程為
(2)設直線l的方程為
設A、B的坐標分別為AB中點為E,

因為AB是等腰△PAB的底邊,所以PE⊥AB.所以PE的斜率解得m=2。
此時方程①為解得所以
所以|AB|=.此時,點P(—3,2)到直線AB:的距離
所以△PAB的面積S=
考點:本小題主要考查橢圓標準方程的求解和橢圓性質的應用.
點評:求解直線與圓錐曲線的位置關系問題,通常會直線方程與橢圓方程聯立方程組,此時不要忘記驗證判別式,而且運算量比較大,要仔細計算.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知,點B是軸上的動點,過B作AB的垂線軸于點Q,若
,.

(1)求點P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線的相交弦長為定值,若存在,求出定直線方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知點R(-3,0),點P在y軸上,點Q在x軸的正半軸上,點M在直線PQ上 ,且滿足.
(Ⅰ)當點P在y軸上移動時,求點M的軌跡C的方程;
(Ⅱ)設為軌跡C上兩點,且,N(1,0),求實數,使,且.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在平面直角坐標系中,點為橢圓的右頂點, 點,點在橢圓上, .


(1)求直線的方程;
(2)求直線被過三點的圓截得的弦長;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,定點,橢圓短軸的端點是,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過點且斜率不為的直線交橢圓,兩點.試問軸上是否存在定點,使平分?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知拋物線經過橢圓的兩個焦點.設,又不在軸上的兩個交點,若的重心(中線的交點)在拋物線上,

(1)求的方程.
(2)有哪幾條直線與都相切?(求出公切線方程)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

分別是橢圓的左,右焦點。
(Ⅰ)若是第一象限內該橢圓上的一點,且,求點的坐標。
(Ⅱ)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中O為坐標原點),求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分10分)
若直線過點(0,3)且與拋物線y2=2x只有一個公共點,求該直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

查看答案和解析>>

同步練習冊答案