【題目】設(shè)函數(shù)f(x)ax(a,b∈Z),曲線yf(x)在點(diǎn)(2,f(2))處的切線方

程為y3.

(1)f(x)的解析式;

(2)證明:曲線yf(x)上任一點(diǎn)的切線與直線x1和直線yx所圍三角形的面積為定值,

并求出此定值.

【答案】(1) f(x)x;(2)證明見(jiàn)解析

【解析】

(1)解 f′(x)a

解得

因?yàn)?/span>a,bZ,故f(x)x.

(2)在曲線上任取一點(diǎn),由f′(x0)1知,過(guò)此點(diǎn)的切線

方程為y[1] (xx0)

x1,得y, 切線與直線x1的交點(diǎn)為 (1,);

yx,得y2x01,切線與直線yx的交點(diǎn)為(2x01,2x01);

直線x1與直線yx的交點(diǎn)為(1,1),從而所圍三角形的面積為

|2x011|2.

所以,所圍三角形的面積為定值2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20175月,來(lái)自一帶一路沿線的20國(guó)青年評(píng)選出了中國(guó)的新四大發(fā)明:高鐵、掃碼支付、共享單車(chē)和網(wǎng)購(gòu).乘坐高鐵可以網(wǎng)絡(luò)購(gòu)票,為了研究網(wǎng)絡(luò)購(gòu)票人群的年齡分布情況,在531日重慶到成都高鐵9600名網(wǎng)絡(luò)購(gòu)票的乘客中隨機(jī)抽取了120人進(jìn)行了統(tǒng)計(jì)并記錄,按年齡段將數(shù)據(jù)分成6組:,得到如圖所示的直方圖:

1)若從總體的9600名網(wǎng)絡(luò)購(gòu)票乘客中隨機(jī)抽取一人,估計(jì)其年齡大于35歲的概率;

2)試估計(jì)總體中年齡在區(qū)間內(nèi)的人數(shù);

3)試通過(guò)直方圖,估計(jì)531日當(dāng)天網(wǎng)絡(luò)購(gòu)票的9600名乘客年齡的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于 兩點(diǎn),與軸交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的方程上恰有3個(gè)解,存在,使不等式成立.

(1)若為真命題,求正數(shù)的取值范圍;

(2)若為真命題,且為假命題,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,平面平面,均為等邊三角形,的中點(diǎn),點(diǎn).

1)求證:平面平面;

2)若點(diǎn)是線段的中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃金分割比例具有嚴(yán)格的比例性,藝術(shù)性,和諧性,蘊(yùn)含著豐富的美學(xué)價(jià)值.這一比值能夠引起人們的美感,被稱為是建筑和藝術(shù)中最理想的比例.我們把離心率的橢圓稱為“黃金橢圓”,則以下四種說(shuō)法中正確的個(gè)數(shù)為(

①橢圓是“黃金橢圓;

②若橢圓,的右焦點(diǎn)且滿足,則該橢圓為“黃金橢圓”;

③設(shè)橢圓的左焦點(diǎn)為F,上頂點(diǎn)為B,右頂點(diǎn)為A,若,則該橢圓為“黃金橢圓”;

④設(shè)橢圓,的左右頂點(diǎn)分別A,B,左右焦點(diǎn)分別是,,若,成等比數(shù)列,則該橢圓為“黃金橢圓”;

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與拋物線有一個(gè)相同的焦點(diǎn),且該橢圓的離心率為,

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程:

(Ⅱ)求過(guò)點(diǎn)的直線與該橢圓交于AB兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(多選)已知函數(shù),其中正確結(jié)論的是( )

A.當(dāng)時(shí),函數(shù)有最大值.

B.對(duì)于任意的,函數(shù)一定存在最小值.

C.對(duì)于任意的,函數(shù)上的增函數(shù).

D.對(duì)于任意的,都有函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是梯形,,,是正三角形,的中點(diǎn),平面平面

(1)求證:平面;

(2)在棱上是否存在點(diǎn),使得二面角的余弦值為?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案