【題目】某手機(jī)生產(chǎn)廠商為迎接5G時代的到來,要生產(chǎn)一款5G手機(jī),在生產(chǎn)之前,該公司對手機(jī)屏幕的需求尺寸進(jìn)行社會調(diào)查,共調(diào)查了400人,將這400人按對手機(jī)屏幕的需求尺寸分為6組,分別是:,,,,,(單位:英寸),得到如下頻率分布直方圖:
其中,屏幕需求尺寸在的一組人數(shù)為50人.
(1)求a和b的值;
(2)用分層抽樣的方法在屏幕需求尺寸為和兩組人中抽取6人參加座談,并在6人中選擇2人做代表發(fā)言,則這2人來自同一分組的概率是多少?
(3)若以廠家此次調(diào)查結(jié)果的頻率作為概率,市場隨機(jī)調(diào)查兩人,這兩人屏幕需求尺寸分別在和的概率是多少?
【答案】(1),.(2)(3)0.035.
【解析】
(1)根據(jù)屏幕需求尺寸在的一組頻數(shù)為50求解區(qū)間對應(yīng)的頻率進(jìn)而求,再根據(jù)頻率分布直方圖的面積之和為1求解即可.
(2)利用分層抽樣的方法以及古典概型的方法求解即可.
(3)利用獨(dú)立事件的概率公式求解即可.
解:(1)由已知,屏幕需求尺寸在的一組頻數(shù)為50,
所以其頻率為,
又因?yàn)榻M距為0.5,所以,
又因?yàn)?/span>,
解得,所以,.
(2)由直方圖知,兩組人數(shù)分別為,,
若分層抽取6人,則在組中抽取2人,設(shè)為,;在組中抽取4分,設(shè)為,,,,
樣本空間共15個基本事件,
記兩人來自同一組為事件,共7個基本事件.
所以.
(3)記事件為屏幕需求尺寸在,事件為屏幕需求尺寸在,若以調(diào)查頻率作為概率,則,,,
所以兩人分別需求屏幕尺寸在和的概率為0.035.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)如圖,三角形所在的平面與長方形所在的平面垂直,,,.
(1)證明:平面;
(2)證明:;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知有限集. 如果中元素滿足,就稱為“復(fù)活集”,給出下列結(jié)論:
①集合是“復(fù)活集”;
②若,且是“復(fù)活集”,則;
③若,則不可能是“復(fù)活集”;
④若,則“復(fù)活集”有且只有一個,且.
其中正確的結(jié)論是____________.(填上你認(rèn)為所有正確的結(jié)論序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若,則當(dāng)時,函數(shù)的圖象是否總在直線上方?請寫出判斷過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線和直線在該直角坐標(biāo)系下的普通方程;
(2)動點(diǎn)在曲線上,動點(diǎn)在直線上,定點(diǎn)的坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與橢圓相交于,兩個不同的點(diǎn),與軸相交于點(diǎn),為坐標(biāo)原點(diǎn).
(1)證明:;
(2)若,求的面積取得最大值時橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個箱子內(nèi)有9張票,其號碼分別為1,2,…,8,9.從中任取2張,其號碼至少有一個為奇數(shù)的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com